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PERFORMANCE OPTIMIZATION OF 5G-ENABLED MOBILE EDGE
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Mobile edge computing (MEC) plays a central role in smart-city construction by strengthening the computing capability
of wireless devices and supporting responsive urban services. This study integrates an intelligent reflecting surface
(IRS)-assisted channel model—an important 5G technology—into MEC system design and formulates an optimization
framework aligned with smart-city performance requirements. An alternating-iteration strategy is used to decompose
the overall problem into manageable subproblems, which are then solved using particle swarm optimization to build
a performance-optimized 5G-based MEC system. Experimental results show that for a 10 Mbit computing task, the
proposed system (M = 2) reduces latency by about 63.81%, lowering delay to 2.148 s compared with 5.935 s under a
local-computing-only baseline, while maintaining good convergence behavior. The results also indicate that the resulting
application platform can preserve fairness among multiple users and meet heterogeneous performance demands. Overall,
the proposed MEC optimization approach delivers low-latency performance that supports efficient smart-city services,
strengthens urban management capability, and contributes to improved service quality.

Index Terms — mobile edge computing, IRS, alternate iteration, particle swarm optimization algorithm, smart
city construction
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INTRODUCTION

With the continuous advancement of space information technologies, information technology (IT), and wireless
communication systems, urban informatization has become a dominant trend in global urban modernization.
It now serves as a key indicator of a city’s comprehensive competitiveness. Urban informatization plays a
vital role in enhancing a city’s carrying capacity, facilitating the integration of social resources, optimizing the
allocation of production factors, and strengthening overall urban governance, thereby stimulating productivity
and socio-economic development [1, 2, 3]. According to China’s national informatization strategy, spatial
information infrastructure, industrial informatization, and urban informatization constitute the three core
construction pillars. As a central component of this strategy, the development level and evolution path of
urban informatization significantly influence the broader direction of national informatization [4, 5].

With breakthroughs in sensor networks, grid computing, and related technologies, the concept of the digital
city is evolving toward a more advanced paradigm—namely, the smart city. Smart cities emphasize the deep
integration of information technologies into urban functions, enabling cities to act as intelligent information
distribution hubs. This transformation enhances urban sustainability, improves living conditions, and promotes
high-quality development. As smart city applications become increasingly embedded in daily life, it is
necessary to further explore and refine their theoretical foundations and implementation frameworks [6, 7, 8,
9, 10].

As one of the key enabling technologies of fifth-generation (5G) communication systems, Mobile Edge
Computing (MEC) has demonstrated substantial potential. MEC shifts computing, storage, and service
capabilities from centralized cloud platforms to the network edge, allowing localized and low-latency service
provisioning [11, 12, 13]. Many smart city scenarios—such as intelligent transportation, autonomous driving,
real-time surveillance, and environmental monitoring—require real-time processing of large volumes of data
close to the data source. Consequently, edge computing plays a critical role in supporting these latency-
sensitive and computation-intensive applications [14, 15].

Driven by the rapid growth of the Internet of Things (IoT), 5G networks, industrial automation, and intelligent
manufacturing, MEC has become a core component connecting physical devices with industrial communica-
tion infrastructures. Recent studies have proposed various MEC optimization frameworks. For example, a
cognitive radio—-MEC model supporting unmanned aerial vehicles (UAVs) was introduced to jointly optimize
local computing and partial task offloading, thereby improving energy efficiency and spectrum utilization
[16]. A dual-delay deep reinforcement learning—based offloading strategy was proposed to enhance service
quality through the integration of software-defined networking and network function virtualization [17].
Additionally, a hybrid bacterial foraging optimization algorithm was developed for IoT—cloud edge task
scheduling, achieving reduced completion time and improved resource utilization [18].

The emergence of 5G has further accelerated the realization of smart cities by providing high bandwidth,
ultra-low latency, and massive connectivity. Several studies have explored the integration of MEC with
emerging technologies to address key challenges in smart city governance. For instance, a UAV-assisted
5G edge computing framework was proposed for hotspot data processing and abnormal event monitoring
[19]. A privacy-preserving data collection architecture based on quad-tree zoning, local differential privacy,
and blockchain was designed to protect user data in smart city environments [20]. Furthermore, a joint
optimization strategy for edge resource allocation was introduced to support latency-sensitive services [21].

In this work, we propose a performance optimization framework for a 5G-based mobile edge computing
system using an intelligent reflecting surface (IRS)-assisted channel model. The normalized channel gain is
computed to support efficient task offloading and execution. An optimization model is formulated to maximize
the total offloaded computation tasks under user demand constraints in smart city scenarios. To reduce
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computational complexity, the original problem is decomposed using a maximum ratio combining strategy,
and an alternating iterative algorithm is developed. The resulting subproblems are solved using particle swarm
optimization, with convergence verified through MATLAB simulations. Finally, a comprehensive simulation
environment is established to evaluate system convergence behavior, latency performance, and scalability,
thereby demonstrating the effectiveness of the proposed framework.

APPLICATION OF MOBILE EDGE COMPUTING IN SMART CITY DEVELOPMENT

The advent of the 5G era has injected new momentum into urban digital transformation. By enabling high-
speed connectivity, ultra-low latency, and large-scale device access, 5G reshapes the intelligent infrastructure
of cities, empowers diverse industries, and fosters innovation-driven economic growth. As a result, smart
cities are evolving toward more integrated, adaptive, and sustainable ecosystems.

Over recent decades, the conceptualization and realization of smart cities have progressed steadily. With
the widespread deployment of next-generation information and communication technologies, the overall
architecture of smart city systems has gradually matured. Typically, this architecture is organized into five
layers: the perception layer, network layer, service layer, application layer, and user layer.

The service layer comprises three major submodules: the public information platform, public databases, and
public facilities, which are usually integrated into a unified cloud-based intelligent platform. By combining
5G networks with artificial intelligence, the Internet of Things (AloT), mobile edge computing, and intelligent
operation centers (IOC), an end—edge—cloud collaborative ecosystem can be formed. This architecture enables
real-time sensing, intelligent analysis, and autonomous decision-making across the entire urban domain.

Therefore, optimizing the performance of 5G-enabled MEC systems is essential for enhancing smart city
infrastructure, improving service responsiveness, and supporting large-scale intelligent applications. Efficient
MEC deployment not only reduces system latency but also enhances resource utilization, reliability, and
scalability, thereby serving as a foundational technology for future smart city development.

PERFORMANCE OPTIMIZATION OF MOBILE EDGE COMPUTING SYSTEMS

System Modeling with IRS-Assisted Communication

IRS Channel Modeling

The Intelligent Reflecting Surface (IRS) is an emerging enabling technology that integrates concepts from
metamaterials, electromagnetic wave manipulation, computational electromagnetics, cybernetics, and wireless
communications. As one of the core technologies envisioned for 5G and beyond, IRS provides a flexible
means to control wireless propagation environments [22].

The fundamental modeling principle is to decompose the conventional direct transmission channel between the
transmitter (Tx) and the receiver (Rx) into two components: (i) a direct Tx—Rx link, and (ii) an IRS-assisted
reflected link following the Tx—IRS—Rx path. The composite channel can be expressed as

_ hky®hrr | hru
PLgyPLrr = PLry’

ey
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where A and hgy denote the channel response vectors from the transmitter to the IRS and from the IRS to
the receiver, respectively, while PLrg and PLgy represent the corresponding path losses. The direct channel
between the transmitter and the receiver is characterized by Ary with path loss PL7y .

The IRS electromagnetic behavior is modeled through a diagonal reflection matrix
© = diag (e’ Bre®, ... Bue’™), ©)

where B, € [0,1] and 6,, € [0,27) denote the amplitude and phase shift of the m-th reflecting element,
respectively.

The IRS-assisted channel is independent of the terminal-side channels, and the resulting response matrices
hrg and hgy can be obtained separately. For instance, the IRS-to-receiver channel response matrix is written
as

hry = [hu1 (£, 7T), - - hun(2, 7)), 3)

where the IRS is assumed to contain n x n reflective elements, and A, x(z, T) denotes the channel coefficient
between the k-th IRS unit and the u-th receiving antenna.

MEC System Optimization Model

In this work, we consider an IRS-assisted mobile edge computing architecture combined with OFDM-based
cooperative relaying. The system consists of a user equipment (UE) located far from the access point (AP), a
relay node positioned closer to the AP, an IRS with M reflecting elements, and an AP integrated with an MEC
Server.

The user application task of size L is partitioned into three components: [y, Ig, and l4, corresponding to the
portions executed locally, offloaded to the relay, and offloaded to the AP, respectively. Thus, the task satisfies

ly+Ilg+14s=L. “4)

Within each time frame of duration 7', the entire task is offloaded and processed. Channel conditions are
assumed to remain constant during one time frame and follow an i.i.d. distribution across different frames.

The direct link from the user to the AP is modeled using Rayleigh fading:

hya = pdy " hya, &)

where /4 represents the small-scale fading component modeled as a complex Gaussian random variable, p is
the reference path loss at d = 1 m, and ayy4 is the path loss exponent. Similar models apply to the user-to-relay
and relay-to-AP channels.

The AP-to-IRS channel follows a Rician distribution:

Ca 1
= hros + | 7——hnLos, 6
gA Ztl LoS Gt NLoS (6)
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where {4 denotes the Rician factor. The channels from the UE to the IRS and from the relay to the IRS are
defined analogously.

Let 0 = [0y, 6s,...,0)] denote the IRS phase shift vector. The corresponding diagonal reflection matrix is

G):diag(ﬁlejel,ﬁzejez,...,BMejeM). (7)

The normalized channel gain for the n-th subcarrier between the UE and the AP is

" H@ h 2
o — g4 Ogu + hyal ’ ®

UA — o2
where 6% denotes the noise variance. Similar expressions hold for the UE-relay and relay—AP links.
Optimization Algorithm Design

Problem Formulation

At time slot #, the received signal at the k-th edge device consists of the direct signal, the IRS-reflected signal,
and additive white Gaussian noise [23]. It is expressed as

Yk =/ P (Hp 1 Ogy + hy i) sk + 1, 9)

where Py is the transmit power, H, is the channel from the IRS to the k-th edge device, g is the channel from
the user to the IRS, A, 4 is the direct channel, s; is the transmitted signal, and n; denotes noise.

With a receive beamforming vector wy, the recovered signal is

Pk = Wi Vi (10)
The resulting SNR is
Pelwi! (Hri©gi+hay)|?
” = Wi (H, : W (1
c
The total offloaded data volume is given by
K
loft = Y tkBylogy (141, (12)
k=1

where f;, and By denote the offloading time and bandwidth, respectively.

The optimization objective is to maximize /g by jointly optimizing beamforming vectors, phase shifts,
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transmit powers, and time allocations:

K
max tiBlog, (14 %
{9k, Pac e O i } kg:l Bl

s.t. Cp:Ep < Enax,
G wil* =1, (13)
C3:0 < ¢y <2m,

K
Cy: Zlk <T.
k=1

Alternating Optimization Strategy

Due to the coupling of multiple variables, the above problem is non-convex. We adopt an alternating
iterative optimization approach [24]. First, the receive beamforming vector is optimized using maximum ratio
combining (MRC) [25]:

o Hry®gi+hai

wi = : (14)
| Hox®gi+ hak
Fixing wy, Py, and #;, the phase shift optimization reduces to
max Iy, s.t.0< ¢n7k < 2m. (15)
n.k
Using triangle inequality properties, the optimal phase alignment condition is
arg(H,1®gy) = arg(ha), (16)
which yields
¢;f,k = arg(hf,{kwk) - arg(gﬁnHﬁWk)' (17)

Based on this decomposition, the original problem is split into two subproblems: one for power and time
allocation, and the other for phase shift optimization.

Numerical Solution

Both subproblems are solved using the particle swarm optimization (PSO) algorithm [26]. MATLAB
simulations are used to evaluate convergence behavior and system performance.

PERFORMANCE EVALUATION OF THE MOBILE EDGE COMPUTING SYSTEM

Simulation Environment Setup

The objective of the simulation experiments is to emulate a smart city scenario in which multiple devices
within the coverage area of a single base station require computational offloading and resource scheduling.
The edge server deployed at the base station is equipped with a reinforcement learning—based decision-making
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module, enabling intelligent task offloading within the network. In this setting, computational resources are
assumed to be limited, and tasks cannot be fully processed locally.

To comprehensively assess the performance gains achieved through the integration of IRS and the proposed
optimization strategies, five benchmark schemes are considered for comparison:

1. Local computing only: All user tasks are processed locally without offloading.

2. Full offloading: All computation tasks of task-oriented users (TUs) are offloaded to MEC servers and
resource users (RUs), i.e., Dy = 0.

3. Offloading without IRS: Tasks are offloaded to MEC servers and RUs without IRS assistance.

4. D2D cooperative offloading: Tasks are offloaded only to nearby RUs via D2D links without MEC
server participation, i.e., cp = 0.

5. No optimization: Transmission power, bandwidth, offloading decisions, and IRS phase shifts are
randomly allocated.

The simulation parameters are configured as follows: the TU is located at (0,0), the base station is positioned
at (0,45), and two RUs (M = 2) are located at (5,2) and (4,9). The IRS is placed at (0,6). All small-
scale fading channels follow independent Rayleigh distributions, while large-scale fading is modeled as
L(d) = Cod—*, where Cyp = —30 dB and o = 3.

The system bandwidth is set to B = 0.75 MHz. The computational frequencies of the TU, MEC server, and
RUs are fj =1 GHz and f, = 0.8 GHz, respectively. The maximum TU transmit power is Pyax = 1 W. The
task size is D = 1 Mbit, with computational complexity C = 600 cycles/bit. The power spectral density of
noise is No = 10~'® W/Hz, and the number of IRS reflection units is N = 64. An obstacle is assumed to block
the direct link between the TU and the second RU. Algorithm execution delay is included in the total system
latency.

System Delay Analysis

Impact of Total Bandwidth on System Delay

Figure 1 illustrates the relationship between total system bandwidth and overall latency under IRS-assisted
optimization. Scenarios A—G correspond to local computing, full offloading (M = 2), no-optimization (M = 2),
D2D offloading (M = 2), no-IRS (M = 2), the proposed scheme with M = 1, and the proposed scheme with
M =2, respectively.

As the total bandwidth increases from 0.2 MHz to 1.6 MHz, the system delay consistently decreases. This
trend occurs because a larger bandwidth enhances the offloading rate, thereby reducing transmission latency
and improving task processing efficiency. Among all schemes, the proposed method with M = 2 achieves the
lowest delay, reaching only 0.0648 s at 1.6 MHz.

In contrast, the unoptimized scheme exhibits higher delay due to random resource allocation, which may
result in excessive latency at certain processing nodes. Furthermore, increasing the number of RUs reduces
computational load per node, thereby lowering both transmission and processing delays. This confirms the
effectiveness of D2D-enabled MEC architectures.
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Figure 1: Analysis of the relationship between total time delay and total bandwidth

Effect of Task Size on Latency

Figure 2 depicts the variation of total system latency with respect to the task size. The task size increases from
1 Mbit to 10 Mbit, and it is observed that latency grows accordingly for all schemes. Larger tasks inevitably
lead to longer transmission and processing times.
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Figure 2: The relationship between total time delay and task calculation

Nevertheless, the proposed optimized MEC system consistently outperforms all baselines. For example, when
the task size reaches 10 Mbit, the latency of the proposed method (M = 2) is 2.148 s, which represents a
reduction of approximately 63.81% compared with the local-only scheme (5.935 s). It also achieves a 17.16%
improvement over the D2D-only scheme and a 6.69% improvement compared to the M = 1 configuration.
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Convergence Performance

Figure 3 presents the convergence behavior of the proposed system under B = 0.8 MHz and D = 1 Mbit. The
system converges after approximately 5 iterations when C = 500 and N = 4, and after about 8 iterations when
C =500 and N = 64. This confirms the stability and reliability of the proposed optimization framework.
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Figure 3: The relationship between total time delay and iterative number of systems

Although increasing the number of IRS reflection units slows down convergence, it also yields lower final
latency. For instance, at 16 iterations, the delay for N = 64 is 0.1819 s, which is 0.0169 s lower than that for
N = 4. This improvement stems from the enhanced signal diversity enabled by additional reflection paths.

Application-Level Analysis in Smart City Platforms

A smart city application platform based on the optimized MEC architecture is developed in accordance with
SDN and NFV principles. The platform consists of three layers: (i) the infrastructure and physical abstraction
layer, (ii) the functional management layer, and (iii) the application service layer. Together, these layers
enable efficient data collection, storage, processing, mining, and visualization.

To evaluate scalability and fairness, the Linux Traffic Control tool is employed to emulate fluctuating 5G
wireless conditions. Real-world OD traffic data are injected into the simulated base station via a wired LAN.
The response latency for varying numbers of users is summarized in Table 1.

When the number of users is below 20, latency remains low and uniform due to sufficient physical resource
blocks (PRBs). As the number of users increases, latency grows gradually due to competition for wireless
resources. However, the low variance across all cases indicates that the proposed system ensures fairness and
stable quality of service.

CONCLUSION

This study integrates IRS technology with an alternating optimization framework to enhance the performance
of 5G-based mobile edge computing systems in smart city environments. Simulation results demonstrate that
system latency decreases as bandwidth increases, with the proposed scheme (M = 2) achieving the lowest
latency of 0.0648 s at 1.6 MHz. For a 10 Mbit task, the proposed method reduces latency by 63.81% compared
to local computing.
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Table 1: Scalability Analysis of the Smart City Platform

Users Latency (ms) ‘ Users Latency (ms)

1 106.79 55 215.22
5 107.27 60 233.00
10 108.55 65 239.32
15 108.74 70 247.44
20 109.14 75 257.78
25 147.81 80 262.43
30 154.01 85 295.88
35 161.86 90 336.72
40 163.67 95 352.76
45 179.40 100 389.24
50 183.14 - -

The convergence of the system is guaranteed, and the smart city platform built on the optimized MEC
architecture exhibits strong scalability and fairness. These results indicate that the proposed framework
effectively addresses the limitations of traditional MEC systems in terms of spectral efficiency and energy
consumption.

Future work will focus on dynamic user mobility scenarios and adaptive task arrival patterns to further align
the system with real-world smart city deployments.
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