Journal of Urban Development and Smart Cities
2025, 2(1), 52-61 52

ROBOTIC CLEANING AND MAINTENANCE TECHNIQUES FOR
SMART HOMES

Yan Li
Xiaong Wie

Household robots are accelerating the evolution of smart-home living, and effective cleaning depends heavily on
reliable perception and navigation. This study improves image-recognition capabilities within a robotic cleaning
system by focusing on its image-processing module. The proposed approach refines image preprocessing and feature
extraction to suppress noise and enhance robustness, and integrates regional stereo-matching constraints to achieve
more accurate region-level correspondence. Dynamic obstacles are tracked in real time using a SURF-KLT scheme, and
a Greedy strategy is then applied to pinpoint moving targets, lowering collision risk and increasing cleaning coverage.
Experimental results show an image-matching accuracy of 99.7%, with an mAP@0.5 of 0.932 and stable training
precision—recall behavior. In practical cleaning tests, the robot successfully identified 23 pieces of household waste and
computed a weighted total score of 39 to support optimal path planning.
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INTRODUCTION

With the rapid advancement of social sciences and emerging technologies, alongside the growing demand for
higher living standards, intelligent residences have gradually evolved into a prominent trend as an innovative
integration of advanced technology and living environments [1, 2]. Intelligent residences employ a wide
range of sophisticated technologies and devices to create living spaces that are efficient, safe, convenient,
and comfortable. In the domain of smart homes, technological applications now extend far beyond basic
device interconnectivity. Contemporary smart home systems achieve seamless communication and intelli-
gent coordination among household devices through the integration of advanced Internet of Things (IoT)
technologies.

For instance, smart thermostat systems can automatically regulate heating and cooling based on indoor and
outdoor temperature, humidity levels, and user preferences, thereby ensuring both energy efficiency and
thermal comfort [3, 4]. Similarly, intelligent kitchen systems offer personalized services such as ingredient
management and cooking recommendations by integrating smart appliances, including refrigerators and
ovens, significantly enhancing convenience and safety [5, 6, 7]. Moreover, modern security systems have
evolved beyond conventional video surveillance and access control, incorporating advanced technologies such
as facial recognition and behavioral analysis, which substantially improve overall residential security [8, 9].

Despite these advancements, residential cleaning—an essential component of smart living—has primarily
relied on conventional sweeping robots. Currently, cleaning robots have achieved a global penetration rate of
approximately 38%, whereas maintenance robots remain relatively uncommon [10, 11]. In addition, cleaning
tasks in smart homes are typically performed two to four times per week. While traditional intelligent robots
can effectively replace manual labor for routine cleaning, they often struggle with complex scenarios such as
irregular furniture layouts, special wall or floor materials, localized deep-cleaning requirements, and sudden
cleaning demands [12, 13, 14, 15]. Consequently, the targeted development of advanced robotic cleaning and
maintenance technologies is crucial for enhancing the overall functionality of smart residential environments.

This study explores the application of image recognition techniques and region-based stereo matching
methods to improve the performance of residential cleaning and maintenance robots. Leveraging digital image
processing, a quantitative evaluation of residential cleanliness is achieved through modules for preprocessing,
feature extraction, and data analysis. To address the challenges associated with parallax computation in stereo
matching, a multi-constraint fusion strategy is proposed, integrating epipolar geometry and region similarity
measures to improve matching efficiency. Furthermore, the SURF algorithm is employed for rapid feature
point detection, while the KLT algorithm is utilized for feature matching. In combination with a Greedy
algorithm, these methods enable accurate spatial localization of the cleaning targets.

ANALYSIS OF ROBOTIC RESIDENTIAL CLEANING AND MAINTENANCE TECHNOLOGIES

Image Recognition Technology

In a vision-driven residential cleaning robot, the perception component is largely built upon digital image
processing (DIP). DIP can be understood as the computational manipulation and interpretation of images to
support operations such as enhancement, feature representation, statistical evaluation, and recognition. In this
context, the goal is to strengthen useful visual information, derive discriminative descriptors, and ultimately
infer an objective level of household cleanliness.

The overall DIP pipeline used for cleanliness assessment can be summarized as follows:
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1. Preprocessing: Apply common enhancement and filtering operations to suppress noise and reduce
unwanted visual interference while emphasizing relevant structures.

2. Feature representation: Extract informative patterns from the processed images and convert them into
measurable feature vectors.

3. Analytical evaluation: Examine the feature vectors to form decision rules and numerical criteria that
support subsequent recognition.

4. Recognition and decision: Use the established criteria to identify the cleanliness condition of the
residential environment.

This staged procedure enables automated, repeatable judgment of indoor conditions and provides the percep-
tion basis for intelligent robotic actions.

Regional Stereo Matching

Fundamental Constraints in Stereo Matching

Stereo matching aims to compute reliable correspondences efficiently; therefore, both precision and runtime
are central concerns. In real acquisition settings, however, the imaging process is affected by multiple sources
of disturbance, including sensor noise, optical distortion, illumination fluctuation, occlusion, repeated surface
patterns, and disparity jumps near depth edges. Because the same 3D scene point can project differently
across two cameras, correspondence may become ambiguous and may lead to incorrect one-to-many matches.

To control this complexity, stereo vision typically employs a collection of constraints derived from geometry
and appearance. These rules narrow the search domain, simplify computation, and reduce mismatches.
Commonly adopted constraints include:

1. Epipolar-line constraint: Given a point in one image, its correspondence in the other image must lie
on the associated epipolar line. Once the epipolar geometry is known, correspondence search is reduced
from a two-dimensional scan to a one-dimensional scan along the line, which accelerates matching
and lowers the error rate. Since physical mounting inaccuracies and lens effects prevent perfect row
alignment in practice, rectification based on calibration results is normally required before matching.

2. Uniqueness constraint: Each feature is assumed to have a single best correspondence. This assumption
is valid in many scenes but may break down in texture-repetitive or texture-poor regions.

3. Smoothness (continuity) constraint: Except at object boundaries, disparity tends to vary gradually
across most surfaces. Hence, neighboring pixels on the same surface usually correspond to neighboring
pixels in the paired image.

4. Photometric compatibility constraint: Although lighting changes and viewpoint differences may
alter intensity values, corresponding neighborhoods are expected to remain broadly similar. Therefore,
regional similarity is preferred over single-pixel comparison, and this idea forms the core of region-based
matching.

5. Left-right consistency constraint: If a point in the left image matches a point in the right image,
reversing the reference images should yield the same pair. This property is useful for locating occlusions
and rejecting unreliable matches.
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6. Ordering constraint: Along the same epipolar line, the relative sequence of corresponding features is
preserved between the two images, preventing crossing correspondences.

7. Disparity-range constraint: Since disparity is inversely related to depth, restricting disparity to a
plausible interval limits the search range and significantly decreases computational cost.

Mechanism of Region-Based Stereo Matching

Region-based matching determines correspondences by comparing intensity patterns in local neighborhoods.
This strategy is effective in areas with rich texture, but it often produces higher mismatch rates in occluded
zones or regions with weak texture.

Let P(x,y) be the candidate point in the reference (left) image. A square window of size (2n+ 1) x (2n+1)
is centered at P(x,y). Along the corresponding epipolar line in the right image, candidate windows of the
same size are examined within a predefined horizontal search interval [x;,x;]. A similarity (or cost) function
is computed for each candidate, and the position that yields the strongest similarity (or minimum cost) is
selected as the match.

In this work, the absolute gray-level difference is used as the elementary cost. A clipping threshold T is
introduced to reduce the influence of outliers during accumulation:

C(x,y), Cx,y)<T,
Clay) = | EE) ) (1)
T, Clx,y) =T.
The window cost for disparity d is then formed by summing the local differences:
n n
Clxyd)=Y Y [Lx+iy+j)—Rx+d+iy+j)l, (2)

i=—n j=—n

where L(-) and R(+) denote the left and right images, respectively, and (i, j) represent window offsets. The
disparity producing the smallest accumulated cost within the search range is taken as the optimal match.

Although region-based matching is computationally intensive because each pixel requires window aggregation,
the approach remains attractive due to its straightforward structure and its suitability for optimization toward
real-time performance. Moreover, many pipelines initially output integer-valued disparity; when higher
precision is required, interpolation, curve fitting, or filtering techniques can be applied to refine the result to
subpixel accuracy.

Motion Target Tracking Using SURF—-KLT

To robustly estimate the position of cleaning targets across consecutive frames, this study combines SURF-
based feature detection with KLT-based feature tracking, and then applies a Greedy strategy to finalize the
target bounding region. First, SURF is employed to quickly locate stable interest points with strong robustness.
Next, these points are tracked frame-to-frame using the KLT method to maintain temporal stability. Finally,
the tracked feature distribution is used to infer the target location and size.
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SURF identifies feature points by constructing an integral image, building a scale-space representation, and
locating extrema via the Hessian matrix followed by non-maximum suppression. For a point (x,y) at scale o,
the Hessian matrix is written as

Lu(x,,0)  Ly(x,y,0)

H = .
(X,y7 G) ny(xayac) Lyy(xay76)

3)
To accelerate computation, the second-order derivatives are approximated using box filters. The Hessian
determinant is commonly approximated by

det(H) ~ DDy, — 0.9D7. 4)

After extracting a suitable set of interest points, the KLT algorithm is applied for matching/tracking with low
computational overhead. KLT is based on optimal estimation and uses the sum of squared differences (SSD)
between local patches in two consecutive frames. If I(x,y,) is the image at time 7, brightness constancy yields

I(x+dx,y+dy,t +dt) =1(x,y,t), 5)

where d = (dx,dy) represents the displacement. The KLT tracker seeks the displacement that minimizes the
SSD over a small window, typically through iterative refinement (e.g., Newton iterations) until the desired
accuracy is reached.

Once multiple feature points are successfully tracked, the target region is estimated from their spatial
distribution. Specifically, a bounding rectangle that encloses the tracked feature set is computed to obtain the
target width w and height 4. A Greedy procedure is then used to refine the rectangle parameters so that the
resulting target localization is stable and consistent across frames.

EVALUATION OF ROBOT CLEANING AND MAINTENANCE PERFORMANCE BASED ON
TRACKING AND MATCHING ALGORITHMS

Algorithm Performance Evaluation

Matching Error Analysis

Following the integration of region-based stereo matching techniques and the SURF-KLT framework to
enhance both regional correspondence accuracy and motion tracking robustness, it is necessary to assess
the effectiveness of the proposed algorithm using standard performance indicators. Commonly adopted
classification metrics include accuracy, recall, and the F1-score. In this study, algorithmic performance is
primarily evaluated using the confusion matrix, precision-recall (PR) curves, and related statistical indicators.

A dataset consisting of 5000 images representing typical residential waste objects was constructed for
experimental validation. Among these, 20% of the images were randomly selected as the testing subset to
evaluate the matching performance. The confusion matrix illustrated in Figure 1 summarizes the classification
results, where rows denote the predicted categories and columns indicate the ground-truth labels. The diagonal
elements represent correct classifications, while the off-diagonal elements correspond to misclassifications.

Out of 1000 test samples, 997 were correctly categorized into their respective seven waste classes, and only
three samples were incorrectly assigned. This corresponds to a matching accuracy of 99.7%, indicating
that the introduction of the proposed matching strategy significantly improves the robot’s ability to identify
household waste accurately.
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Figure 1: Algorithm matching result
Performance Comparison Before and After Optimization

Since multiple algorithms were combined to enhance the image processing module, a step-by-step comparison
was conducted to evaluate their individual and collective contributions. Specifically, four configurations were
examined: (i) SURF only, (ii)) SURF combined with KLT, (iii)) SURF-KLT combined with the Greedy strategy,
and (iv) SURF-KLT with Greedy optimization and stereo matching constraints.

Using 40% of the dataset as the training set, the corresponding mAP@0.5 curves are shown in Figure 2.
After 150 training iterations, the mAP@0.5 values reached 0.755, 0.814, 0.893, and 0.932, respectively. The
monotonic increase across these configurations demonstrates that the collaborative use of multiple algorithms
substantially enhances the perception and tracking capability of the robotic system, thereby meeting the
precision requirements for waste detection and cleaning tasks.
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Figure 2: mAP-0.5 curves of different algorithms

Furthermore, Figure 3 illustrates the precision and recall trends of the proposed method incorporating SURF-
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KLT, Greedy optimization, and stereo constraints. The relatively small oscillations indicate stable convergence.
Both precision and recall gradually increase and stabilize within the range of 0.85-0.87 after approximately
120 iterations, confirming the reliability and consistency of the training process.

1.0

120

Precision

Precision
0.2 4 Recall
% (3)
0.0 T T T
0 30 60 90 120 150

Epoch

Figure 3: Fluctuations of Precision and Recall of paper method

Practical Implementation of Robotic Cleaning

Cleanliness Evaluation

The trained algorithm was embedded into the visual perception module of the cleaning robot for real-world
testing. A residential area of 70 m? was selected as the experimental environment. The robot dynamically
identified and categorized seven types of waste items distributed throughout the residence.

According to the adopted classification scheme, cardboard and paper were labeled as organic waste, metals
and plastics as inorganic waste, scattered hair as uncollected sweeping waste, and glass fragments as solid
residue. Each waste category was assigned a corresponding weight to compute a comprehensive cleanliness
index. When this index exceeds a threshold value of 20, the robot initiates deep-cleaning operations.

Different cleaning strategies were adopted for different waste types. Plastic, metal, and paper waste were
handled by sweeping, hair was removed using suction, and solid residues such as glass were collected
mechanically. Table 1 summarizes the detected waste distribution and the corresponding weighted values. A
total of 23 waste items were detected, resulting in an aggregated score of 39, which exceeds the predefined
threshold and triggers deep cleaning.

Optimal Path Planning

After identifying the waste distribution, the robot plans an optimal cleaning trajectory based on the detected
categories and their spatial positions. This planning process minimizes redundant traversal, avoids obstacles
such as furniture and corners, and reduces collision risks.

As illustrated in Figure 4, the robot starts at the origin (0,0) and moves sequentially to the target zones. It
first reaches (25,5) to remove scattered hair, then proceeds to (20,30) and (20,50) to collect inorganic waste.
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Table 1: Quantity of Garbage in Residences and its Weighted Total Value

Types of Garbage Quantity of Garbage Weighted Total Value
Inorganic waste (metals, plastics)

Small 5 7
Middle 1 3
Big 4 6
Organic waste (cardboard, paper)

Small 6 8
Middle 3 5
Big 1 3
Uncollected cleaning waste (broken hair) 2 4
Solid residue (glass) 1 3
Total 23 39

Next, it moves to (30,50) to retrieve solid residues, followed by (50,40) for organic waste sweeping. After
completing the cleaning process, the robot navigates to (70,70) to enter a standby state.
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Figure 4: Optimal cleaning path

This optimized route minimizes repeated area coverage and ensures efficient task completion within the
shortest possible time, thereby demonstrating the effectiveness of the proposed perception and planning
framework.

CONCLUSION

This study presents a multi-algorithm fusion framework that significantly enhances the visual perception
and operational performance of residential cleaning robots. By integrating stereo matching constraints with
SURF-KLT-based tracking and Greedy optimization, the proposed method achieves a classification accuracy
of 99.7% on a dataset of 1000 waste images. The combined framework attains an mAP@0.5 of 0.932, while
precision and recall stabilize between 0.85 and 0.87 after 120 training iterations, satisfying the accuracy
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requirements for intelligent cleaning tasks.

In a real-world environment of 70 m?, the robot accurately localized 23 waste regions, computed a weighted
cleanliness index, and generated an efficient cleaning path based on dynamic target tracking. These results
confirm that the proposed method effectively improves both environmental perception and task execution
efficiency.

Future work will extend this approach to larger residential spaces to investigate scalability, explore system
limitations, and further enhance the robustness and adaptability of robotic cleaning and maintenance systems.
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