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AI-ASSISTED GREEN SPACE LAYOUT OPTIMIZATION FOR
SMART-CITY ENVIRONMENTAL DESIGN
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As ecological principles increasingly guide contemporary architectural and urban design, optimizing green-space
layouts has become central to improving built-environment performance. This study applies the Pix2Pix model to
interpret planning-area maps and develops a green-space layout support system implemented in a Unity3D engine with
a Python-based workflow. The system enables visual simulation of alternative green-layout schemes and helps designers
compare options to identify a preferred configuration. In a case validation, the Al-assisted optimization adopts a zoned
daylighting strategy for public areas. Simulation results show reductions in district-building energy use, with cooling
demand decreasing from 75.64 kWh/m? to 65.32 kWh/m? and heating demand dropping from 45.26 kWh/m? to 42.31
kWh/m?. Residents also reported high satisfaction with the simulated retrofit outcomes. Overall, the proposed approach
supports environmentally responsible and sustainable smart-city development by lowering environmental impacts and
contributing to healthier, more livable urban spaces.
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INTRODUCTION

With the rapid pace of urbanization, cities are increasingly confronted with a wide range of challenges,
including traffic congestion, environmental degradation, inefficient resource utilization, and declining living
conditions. In response to these issues, the concept of the smart city has gradually emerged, aiming to
enhance the efficiency of urban management and operations through the integration of advanced technologies,
while creating more livable and resilient urban environments. Within this framework, green and sustainable
development has become a core principle, and the realization of an ecologically balanced and sustainable
green space configuration has become an urgent task in contemporary urban planning [1, 2, 3].

Urban green spaces—such as parks, community gardens, waterfront areas, and urban forests—play a vital
role in improving environmental quality, promoting public health, and enhancing residents’ overall well-being.
Smart city initiatives emphasize the strategic planning and construction of such spaces to foster healthy
and inclusive urban ecosystems. By integrating vegetation coverage, water-sensitive design, and ecological
restoration, cities can establish more sustainable green infrastructures. Moreover, intelligent technologies
enable the implementation of smart irrigation systems, adaptive lighting, and automated environmental
monitoring, thereby improving the ecological performance of green spaces and strengthening their long-term
sustainability. With ongoing technological advancements, artificial intelligence (AI) has emerged as a powerful
tool that is increasingly being applied across diverse sectors. Its application in urban green space planning
introduces innovative approaches to spatial optimization and decision-making, offering new possibilities for
smart city development [4, 5, 6, 7].

Previous studies have highlighted the role of smart cities in addressing complex urban challenges and creating
more comfortable and sustainable living environments. For instance, the concept of “cyber-physical” cities
emphasizes the integration of sustainability with environmental, social, and governance dimensions in urban
operations [8]. Other research has incorporated Al-based algorithms into green landscape design, developing
visual systems that operate in both online and offline modes, thereby improving efficiency without disrupting
ongoing workflows [9]. Some scholars have focused on designing roadways that accommodate both pedestrian
activities and vehicular traffic while aligning with green economic principles, using GIS technologies and
genetic algorithms to optimize public street spaces and bridge the gap between urban development and public
health [10].

In the field of generative design, generative adversarial networks (GANs) have been shown to produce novel
images that conform to domain-specific design rules. Experimental results indicate that GANs can extract
implicit design principles and enhance data augmentation, thereby improving the generative capacity of design
algorithms [11]. Other studies have emphasized the significance of green indices in urban planning, demon-
strating that areas with low green coverage still possess potential for ecological improvement, and stressing
the importance of reserving green space as a key strategy for achieving urban well-being [12]. Research on
smart city development has further explored the role of information and communication technologies (ICT) in
transportation systems and their impacts on citizens’ quality of life [13].

Urban green space has also been recognized as a fundamental component of urban infrastructure. Scholars
have proposed classification frameworks based on functional combinations of green spaces and investigated
variations in public demand for different types of green areas, revealing strong preferences and growing
diversification in green space typologies [14]. Additional studies have confirmed the positive effects of urban
green spaces on residents’ lifestyles, using statistical and spatial analyses to demonstrate how human activity
patterns correlate with park distributions, thereby highlighting the need for policy support for accessible green
spaces [16]. Furthermore, it has been argued that while urban expansion can alleviate population pressure,
ecological sustainability must remain a top priority in smart city construction [17]. Comparative studies of
European cities have shown that the effectiveness of green space planning and management is closely linked
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to governance structures, levels of public participation, and citizen engagement [18].

Against this background, this paper proposes an Al-assisted green space layout design framework for smart
cities based on the Pix2Pix algorithm. The model is intended to support optimal spatial planning by auto-
matically generating and refining green space configurations that promote sustainable urban development.
Using the Unity3D engine and Python as the development platform, the generator and discriminator com-
ponents of the Pix2Pix architecture are employed to interpret and analyze floor plans of target urban areas.
After inputting relevant design parameters, the model produces simulation-based layout schemes, which are
iteratively adjusted to obtain an optimal solution.

To validate the proposed approach, a residential neighborhood is selected as a case study. The model is applied
to assist in the intelligent design of green space layouts while accounting for local climatic conditions. By
examining changes in energy consumption and resident satisfaction before and after the implementation of the
proposed layout, this study evaluates the effectiveness of Al-assisted green space planning and demonstrates
its potential in advancing sustainable smart city development.

METHOD

Fundamental principles and advantages of the Pix2Pix algorithm

Core concepts of the Pix2Pix framework

In this research, the Pix2Pix algorithm is adopted as the primary method for generating green space layouts in
urban environmental design. Based on its inherent characteristics, a systematic experimental framework is
developed to support the layout generation process.

Pix2Pix [19] is a supervised learning model that belongs to the family of conditional generative adversarial
networks (cGANs). A cGAN is an extension of the standard generative adversarial network (GAN), and
understanding Pix2Pix first requires a basic understanding of GAN principles.

GAN is a deep learning framework inspired by game theory, in which two networks compete in a zero-sum
game: a generator and a discriminator. The generator learns a mapping G : z — y, transforming a random
noise vector z into a synthetic output y, while the discriminator attempts to distinguish between real and
generated samples. Through continuous adversarial training, the generator improves its ability to produce
outputs that resemble real data.

Conditional GANs enhance this framework by introducing conditional information into the generation process.
Instead of learning from random noise alone, cGANSs learn a conditional mapping G : {x,z} — y, where x
represents a given input condition (such as an image or structural map), z is a random noise vector, and y is the
corresponding output. This conditional mechanism enables the model to generate outputs that are consistent
with specific constraints or semantic contexts.

Pix2Pix architecture and its advantages

Beyond generating images based on textual descriptions, cGANs are well suited for a wide range of image-to-
image translation tasks, where an input image serves as the condition. Pix2Pix was specifically designed to
address such problems.
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The Pix2Pix architecture consists of two main components: a generator G and a discriminator D. Its objective
function is derived from the cGAN framework. A paired dataset is first prepared, containing input images x
and their corresponding target images y. The input image x acts as a conditional constraint and is fed into
both the generator and the discriminator. The generator also receives a random noise vector z and produces a
synthesized image G(x,z). The discriminator then evaluates whether the pair {x, G(x,z)} is real or fake by
comparing it with the ground-truth pair {x,y}, outputting a scalar value between 0 and 1. A value closer to 1
indicates a higher likelihood of authenticity.

During training, the generator continuously updates its parameters to fool the discriminator, while the
discriminator simultaneously improves its classification accuracy. This iterative process gradually enhances
the realism and fidelity of the generated images.

The objective function of the cGAN framework can be written as
Ze6an(G, D) = By [log D(x,y)] + Ey ;[log(1 — D(x, G(x, 2)))]. ()

In this adversarial process, the generator attempts to minimize the loss, whereas the discriminator aims to
maximize it.

Previous studies have shown that combining adversarial loss with traditional pixel-wise loss functions can
significantly improve output stability and realism. Therefore, Pix2Pix introduces an additional L; loss term,
which encourages the generated image to be structurally similar to the target image. The final optimization
objective becomes

G = argmci;nmlglx.,%GAN(G,D) + 121 (G), 2)

where A controls the relative importance of the L; constraint.

One of the most important strengths of Pix2Pix is its generality. Unlike many task-specific cGAN models,
Pix2Pix does not rely on customized network structures for different applications. Instead, it can be adapted
to a wide range of problems simply by modifying the training dataset, making it particularly suitable for
interdisciplinary studies such as urban green space planning.

Construction of the green space layout design model

Simulation platform and programming environment

The simulation environment in this study is developed using the Unity3D engine [20], a cross-platform
real-time rendering engine created by Unity Technologies. Unity3D has become a popular choice in recent
years due to its versatility and strong visualization capabilities. Its main advantages in this research include:

* Integrated development environment: Unity3D follows an “all-in-one” design philosophy, integrating
scene editing, scripting, rendering, and debugging into a single platform.

* Real-time visualization: Parameters can be modified dynamically during execution, allowing instant
visual feedback on green space layout designs.

» Extensive resource support: Unity’s Asset Store provides a large collection of free and paid resources,
significantly reducing development time.

The programming language used is C#, a modern, object-oriented, and component-based language supported
by the Mono framework. C# is widely used in Unity-based development due to its stability, ease of learning,
and strong industry support.
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Model implementation

The Pix2Pix-based green space layout generation model is implemented using Python [21] in the PyCharm
development environment. The main steps of the modeling process are summarized as follows:

1. Two folders are created within the dataset directory: one for input layout maps and the other for
corresponding labeled maps. The numbers and filenames of these images must match exactly. The
script combine_A_and_B.py is then executed to merge paired images into a single training format.

2. Before training, key parameters are configured, including dataset paths, multi-GPU options, generator
and discriminator architectures, batch size, and the number of data loading threads. Training-related
parameters such as the number of epochs, learning rate, and loss function type are also specified.

3. The model is trained by running the train.py script. During training, the Visdom visualization tool is
used to monitor the evolution of the loss curves and the quality of generated images.

4. After training, the generated layouts are evaluated against real data. If the results are unsatisfactory,
training can be resumed by enabling the continue_train option. The test.py script is then used to
generate final layout outputs for evaluation.

Loss functions and optimization strategy

The Pix2Pix loss function is derived from the conditional GAN framework:

Ze6an (G, D) = By [log D(x,y)] + Ex o[log(1 — D(x, G(x,2)))]. 3)

The generator seeks to minimize this loss, while the discriminator aims to maximize it. To further constrain
the similarity between the generated and real images, Pix2Pix incorporates an L; loss term. The combined
objective function is

G = argmci;nmlglx.,%GAN(G,D) +A.2.1(G). 4)

For optimization, the Adam algorithm is employed, with momentum parameters 3; = 0.5 and 8, = 0.999.
This optimizer provides stable convergence and is well suited for adversarial training tasks.

RESULTS AND DISCUSSION

Selection of the research site

Basic information of the selected residential project

The case study selected for this research is a high-rise residential community located in Xi’an, China. Although
the project has obtained a two-star green building design certification, it still exhibits notable deficiencies
in several key indicators, including plot ratio, green space coverage, and building density. Moreover, the
overall energy consumption of the residential buildings remains high, while the satisfaction level of residents
is relatively low. At present, the evaluation system for high-standard green buildings in China is still under
development, and the correlation between mandatory and scoring items in the “Four Sections and One
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Environmental Protection” framework remains insufficiently precise. This often results in suboptimal spatial
configurations of green buildings.

To address these shortcomings, this study applies an Al-assisted green spatial layout design model to optimize
both the neighborhood environment and the spatial organization of buildings. The selected site is located on
Guo Du Street in Chang’an District, Xi’an, bordered by the planned Gao Yang 4th Road to the west, Gao
Yang 3rd Road to the east, Jian Ye 3rd Road to the south, and Jian Ye 2nd Road to the north. The total planned
land area is 35,624.62 m?, with a gross floor area of 136,542.26 m?. Of this, 96,524.35 m? is dedicated to
residential use above ground. Commercial buildings occupy 6,642.35 m?, while public service facilities
account for 2,364.52 m?, with the remainder consisting of ancillary neighborhood amenities such as fitness
and recreational spaces.

The project has a plot ratio of 3.4, a green space ratio of 29.65%, and a building density of 20.14%,
accommodating a total of 962 households. In this study, both the community environment and the residential
buildings are redesigned using the Al-assisted green layout framework. The sample includes five 13-story
buildings, five 15-story buildings, two 17-story buildings, one 21-story building, one 26-story building, and
one 30-story building. Detailed information is summarized in Table 1.

Table 1: Single building information

Floor number | Function Monomer building area (m?) | Building number | Altitude (m) | Structural form | Household number
A-1# Business and office 6384.98 15F/-2F 92.36 Shear wall e
A-2# Supporting house 9737.86 26F/-2F 96.42 Shear wall 164
A-3# Housing 5848.83 30F/-1F 99.86 Shear wall 172
A-4# Housing 8326.45 21F/-1F 92.34 Shear wall 62
A-5# Housing 4908.07 15F/-1F 48.92 Shear wall 50
A-6# Housing 15748.9 17F/-1F 53.64 Shear wall 37
A-T# Housing 7705.77 15F/-1F 48.92 Shear wall 39
A-8# Housing 8646.55 15F/-1F 48.92 Shear wall 74
A-9# Housing 13491.68 17F/-1F 53.64 Shear wall 39
A-10# Housing 5108.82 15F/-1F 48.92 Shear wall 39
A-11# Housing 15806.1 13F/-1F 42.36 Shear wall 21
A-12# Housing 9346.39 13F/-1F 42.36 Shear wall 54
A-13# Housing 8246.71 13F/-1F 42.36 Shear wall 73
A-14# Housing 5247.85 13F/-1F 42.36 Shear wall 79
A-15# Housing 7429.79 13F/-1F 42.36 Shear wall 79

Climatic conditions of the study area

Prior to the green layout optimization, a detailed climatic analysis of the site was conducted to ensure that
the design could effectively respond to local environmental conditions. Xi’an is situated in the southern
Guanzhong Plain and experiences a warm temperate semi-humid continental monsoon climate, classified as
cold zone B.

Meteorological data extracted using Ecotect software were employed to generate annual wind rose diagrams
for the study area. Figure 1 illustrates the prevailing wind directions and velocities for the entire year, as
well as for winter and summer periods. The annual dominant wind direction is southwest, with a maximum
recorded speed of 34.9 knots/h and a frequency of 11.11%. During winter, the dominant wind directions
are east-northeast and west-southwest, each with a frequency of 11.87%. In summer, the prevailing wind
direction shifts to the west, with wind speeds ranging from 0.2 m/s to 30 m/s.

Additional climatic parameters are listed in Table 2. The extreme maximum and minimum temperatures are
40.63°C and —15.23°C, respectively. The annual sunshine duration is approximately 1,426.32 h, with an
average annual precipitation of 542.36 mm. Xi’an belongs to the general solar resource zone in China, with
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Figure 1: Wind velocity analysis

an annual total solar radiation of 4,752.62 MJ/m? and an average daily radiation of 13.02 MJ/m>. The average
daily sunshine duration ranges from 4.5 h in winter to 7.5 h in summer, providing favorable conditions for the
utilization of renewable energy in green layout planning.

Table 2: Analysis of major natural environment conditions

Serial number | Species Numerical value
1 Annual average temperature 14.23°C
2 Annual average rainfall 542.36 mm
3 Average temperature for the coldest month -1.32°C
4 Average temperature of the hottest month 28.63°C
5 Minimum extreme temperature -15.23°C
6 Maximum extreme temperature 40.63°C
7 Maximum annual precipitation 923.64 mm
8 Minimum annual precipitation 306.52 mm
9 Average annual relative humidity 68.92%
10 Mean sea level pressure value 1052.62 hPa

Simulation results of green layout optimization

The Pix2Pix-based green layout design model was employed to assist planners in optimizing the environmental
configuration of the selected residential community. The resulting land-use distribution before and after the
transformation is presented in Table 3.

The Al-assisted design incorporates a variety of passive and active energy-saving strategies. Passive strategies
primarily focus on the spatial reorganization of green infrastructure, such as the installation of permeable
pavements and the optimized placement of solar panels. These measures are aligned with the energy-saving
requirements of public buildings in Shaanxi Province and meet the mandatory criteria for two-star green
buildings.

Permeable pavements constitute the largest proportion of green infrastructure in the optimized layout. Over
96% of sidewalks, open spaces, and parking areas are converted to permeable surfaces. Due to structural
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Table 3: Design results of the environment and layout of the building

Land type . Before transforn.lation A . After transformtation ‘
Occupied land (m?) | Occupied proportion (%) | Occupied land (m?) | Occupied proportion (%)

Building roof 3654.26 91.07% 3654.2 82.62%
Road surface 115.42 2.88% 106.35 2.40%
Urban green space 69.52 1.73% 91.26 2.06%
Walkways and parking lots 56.93 1.42% 52.34 1.18%
Water float 36.42 0.91% 95.64 2.16%
Green roof 64.26 1.60% 96.35 2.18%
Solar panel 0 0.00% 265.34 6.00%
Sunken green space 15.24 0.38% 56.54 1.28%
Biostranded facilities 0.65 0.02% 4.96 0.11%
Rainwater bucket 4 —_— 16 —_—

constraints and cost-benefit considerations, green roofs are implemented only on selected buildings, increasing
their coverage from 0.91% to 2.16%. Flat green spaces are redesigned as sunken green areas and bioretention
facilities to improve stormwater management and water purification. Consequently, the proportion of sunken
green spaces increases from 0.38% to 1.28%, while bioretention facilities grow from 0.02% to 0.11%.

Rainwater harvesting systems, including 16 rain barrels, are integrated into the design to enhance water reuse.
Furthermore, given the high solar potential of the site, 265.34 m? of photovoltaic panels are installed to reduce

reliance on non-renewable energy sources.

Active strategies primarily target the optimization of HVAC and lighting systems. The coefficient of perfor-
mance (COP) of the cooling system is improved by 17.42% compared to baseline energy-saving standards.
High-efficiency LED lighting is adopted throughout the project, with zoning strategies applied to corridors,
stairwells, and entrance halls to reduce lighting power density and minimize unnecessary energy consumption.

Evaluation of optimization performance

Comparative analysis of energy consumption

To quantify the effectiveness of the proposed layout, energy simulations were conducted using the Design-
Builder platform. Table 4 summarizes the energy consumption per unit area before and after optimization.

Table 4: Unit building area energy consumption value

Energy consumption project Before (kWh/m?) After (kWh/m?) Energy efficiency (%)
General building | Residential building | General building | Residential building | General building | Residential building

Total energy consumption 150.84 131.41 129.18 111.16 14.36% 15.41%
Refrigeration energy consumption 75.64 68.52 65.32 58.94 13.64% 13.98%
Heat consumption 45.26 41.23 42.31 36.48 6.52% 11.52%
Lighting energy consumption 15.42 11.49 9.63 7.52 37.55% 34.55%
Equipment energy consumption 9.87 6.52 8.97 6.09 9.12% 6.60%
Energy consumption in hot water 4.65 3.65 2.95 2.13 36.56% 41.64%

Before optimization, the total energy consumption of the general buildings and residential buildings was
150.84 kWh/m? and 131.41 kWh/m?, respectively, exceeding the benchmark values specified by local
standards. After applying the optimized green layout, significant reductions were observed in cooling, heating,
lighting, and domestic hot water consumption. For instance, cooling energy decreased from 75.64 kWh/m? to
65.32 kWh/m?, while heating energy dropped from 45.26 kWh/m? to 42.31 kWh/m?.

Overall, the energy-saving rate for residential buildings reached 15.41%, demonstrating the substantial impact
of the Al-assisted design approach on sustainable community development.
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Resident satisfaction analysis

In addition to energy efficiency, resident satisfaction is a critical indicator of smart city performance. Based
on previous studies, five evaluation dimensions were established: natural environment (A1), built environment
(A2), green activity areas (A3), spatial distribution of facilities (A4), and energy-saving measures (AS).

A Likert-scale questionnaire was used to assess satisfaction among young, middle-aged, and elderly residents.
As illustrated in Figure 2, all dimensions scored above the neutral midpoint of 3. Specifically, satisfaction
with the natural environment (4.18), built environment (4.16), green activity areas (3.86), and energy-saving
measures (3.96) indicates a generally positive perception of the optimized layout.

:] Young man
436 [ IMiddle age

“ [ 101d people

Figure 2: Analysis of environmental satisfaction in the community

The highest score for the natural environment reflects the improved vegetation coverage and spatial coherence
achieved through the Al-assisted design. The relatively lower score for facility distribution (3.36) suggests
that further refinement is needed in the placement and accessibility of service and rest facilities.

Overall, the results confirm that the proposed green layout framework not only improves energy performance
but also enhances residents’ perceived comfort and quality of life.

CONCLUSION

This study proposes an intelligent auxiliary design framework for green space layout in smart city environments
by integrating the Pix2Pix algorithm with the Unity3D simulation platform. Through a real-world community
case study, the feasibility and effectiveness of the proposed model were validated. The main conclusions can
be summarized as follows.

1. To enhance stormwater management and improve water purification capacity, the original flat green
areas within the community were redesigned as sunken green spaces and bioretention facilities. As
a result, the proportions of sunken green spaces and bioretention facilities increased from 0.38% and
0.02% to 1.28% and 0.11%, respectively. In addition, a zoned lighting strategy was implemented in
public areas, with reduced lighting power density in corridors, stairwells, and foyers. This demand-
oriented allocation effectively minimized unnecessary energy consumption.
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2. After implementing the optimized layout generated by the proposed green space design model, signifi-
cant reductions in building energy consumption were observed. Specifically, the cooling and heating
energy demands of the community buildings decreased from 75.64 kWh/m? and 45.26 kWh/m? to
65.32 kWh/m? and 42.31 kWh/m?, respectively. Moreover, the overall energy-saving rate of residen-
tial buildings reached 15.41%, demonstrating the substantial energy efficiency gains enabled by the
Al-assisted approach.

3. The post-renovation satisfaction levels of residents were generally high, with the natural environment
receiving the highest score (4.18 points). This indicates that the green space layout generated with arti-
ficial intelligence support provides richer vegetation coverage and a more rational spatial organization,
significantly improving the perceived quality of the living environment.

4. The proposed artificial intelligence-based framework offers a practical tool for assisting the design
of rational building environments and spatial configurations. It supports sustainable development
objectives in urban construction and provides valuable insights and methodological references for future
green and eco-friendly building projects.
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