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SELF-PARKING FOR INTELLIGENT CONNECTED VEHICLES IN
GATED RESIDENTIAL COMMUNITIES: MULTI-SENSOR FUSION

LOCALIZATION AND PATH-PLANNING ALGORITHM DESIGN

Donald Shoup
Lijun Liu

As cities continue to densify, intelligent connected vehicles increasingly encounter practical challenges in park-
ing—especially in gated residential communities where tight layouts and diverse obstacles demand higher-performing
autonomous parking solutions. To address autonomous parking in narrow residential parking bays, this study presents a
path-planning approach built on multi-sensor fusion localization. An environmental sensing platform is developed using
12 ultrasonic sensors and four high-definition cameras, and a fusion framework is constructed by combining a camera
model, an IMU measurement model, and a wheel-speed (tachometer) kinematic model. An enhanced inverse-expansion
Hybrid A* planning method is introduced to boost efficiency by swapping the start and goal positions, allowing node
expansion to proceed from the constrained interior space toward a more open area. Simulation results indicate that
planning completes within 1.4 seconds across scenarios, with a best-case runtime of 0.75 seconds. Parking-space
feasibility tests show that at 3 km/h the minimum required space is 6.821 m × 2.164 m, increasing to 7.058 m × 2.205 m
at 6 km/h. The method achieves safe planning for both perpendicular and parallel parking, while keeping the vehicle’s
intersection-position error relative to the parking boundary within 12 cm. Overall, the proposed approach offers a
practical and effective technical pathway for autonomous parking in complex residential settings.

Index Terms — intelligent connected vehicle, multi-sensor fusion, autonomous parking, path planning, Hybrid
algorithm, localization
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INTRODUCTION

Throughout the course of urban growth, the planning and construction of residential districts has remained
a central concern. Among the prevailing development patterns, closed residential areas are especially
common and exert long-lasting influence on urban spatial structure, residents’ daily routines, and broader
social development [1, 2, 3, 4]. A closed residential area typically refers to a neighborhood with clearly
defined boundaries—often delineated by walls or fences—that limits unrestricted entry by non-residents
while providing internal property management and supporting services [5, 6, 7]. Historically, this community
form has addressed demands for security, privacy, and environmental quality for extended periods [8, 9].
Nevertheless, closed residential areas also introduce notable drawbacks. In societies with high car ownership,
perimeter barriers can fragment the urban road network, reduce network permeability, intensify parking
pressure, and lower overall traffic efficiency. In this context, intelligent connected vehicle (ICV) autonomous
parking systems offer a promising way to mitigate these constraints [10, 11, 12, 13].

Intelligent connected vehicles integrate advanced onboard sensing, control, and actuation technologies with
modern communication and networking capabilities. By enabling V2X information exchange and shared
situational awareness, such vehicles can support complex environment perception, intelligent decision-making,
cooperative control, and reliable execution, with the long-term aim of achieving safe, comfortable, energy-
efficient, and highly efficient mobility that can partially or fully replace human driving operations [14, 15, 16,
17]. Within this broader ICV ecosystem, autonomous parking has progressed relatively quickly and is often
considered one of the more mature application domains. For instance, BenQ Electronics has proposed an
unmanned parking solution that addresses parking constraints through a vehicle handling approach described
as whole-vehicle suspension during the parking process [18, 19, 20]. Likewise, Bosch’s VoiceParkSystem
explores driver-assist intelligent parking technology that allows users to specify a desired parking location by
voice, after which the system searches for an available space, performs the parking maneuver automatically,
and records the process using an onboard recording device [21, 22, 23, 24].

Traffic congestion and shortages of parking resources are becoming increasingly severe in modern cities,
and the problem is particularly acute in densely populated residential districts where parking difficulty has
become a key determinant of residents’ quality of life. The spatial characteristics of closed residential areas—
including narrow passages, intricate geometric layouts, and tightly arranged parking spaces—pose substantial
challenges for conventional manual parking. Drivers must execute precise maneuvers within constrained
spaces, which not only demands high driving skill but also raises collision risk. Moreover, repeated reversing
and incremental adjustments extend parking duration and reduce overall parking throughput. Against this
background, intelligent autonomous parking technology provides a compelling pathway for improvement.
By combining advanced sensing with intelligent algorithms, an autonomous parking system can complete
parking maneuvers without continuous driver intervention, reducing driver burden while improving both
accuracy and efficiency. However, the complex environments typical of closed residential areas impose higher
technical requirements on autonomous parking systems, notably in high-precision environment perception,
robust vehicle localization, and efficient path planning.

Motivated by these challenges, this study proposes an integrated technical solution. First, a multi-sensor
fusion localization framework is developed by combining measurements from ultrasonic sensors, high-
definition cameras, inertial measurement units (IMUs), and wheel tachometers to obtain accurate estimates of
vehicle state and surrounding environmental features. Next, a complete set of sensor and motion models is
established—including a camera projection model, an IMU error model, and a vehicle kinematic model—to
provide the theoretical foundation for subsequent data fusion. Then, to address narrow-space characteristics
in closed residential environments, an improved inverse extended Hybrid A⋆ path-planning algorithm is
designed; planning efficiency and path quality in complex scenarios are enhanced through an optimized
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Figure 1: Image-data processing flow for localization and mapping (schematic).

search strategy and a refined cost-function formulation. Finally, simulation experiments across multiple
parking scenarios are conducted to validate the effectiveness and robustness of the proposed approach, thereby
providing technical support for real-world deployment.

AUTONOMOUS PARKING PATH PLANNING BASED ON MULTI-SENSOR FUSION LOCALIZA-
TION

This section models the parking task using the environmental data acquisition framework and sensor models,
and then develops a path-planning method built upon multi-sensor fusion localization. The proposed approach
is intended to support the autonomous parking system design for intelligent connected vehicles operating in
closed residential areas.

Environmental Data Acquisition System

Accurate autonomous parking requires reliable perception of the near-field environment, correct identification
of vacant parking spaces, and verification that the detected space satisfies the constraints needed for automated
maneuvers. The environmental data acquisition system considered here integrates short-range ultrasonic
sensors, long-range ultrasonic sensors, and high-definition cameras distributed around the vehicle body. These
sensors estimate distances to surrounding vehicles and obstacles, while ABS wheel-speed sensors provide
velocity signals that are used to infer traveled distance. By combining distance observations with motion
information, the system constructs an environmental model of the parking space and evaluates whether its
dimensions are sufficient for parking.

Using ultrasonic scanning, the distance between the vehicle and nearby obstacles can be measured in real
time. With the ABS wheel-speed signal, the system estimates the vehicle’s incremental displacement and uses
this information to infer candidate parking-space boundaries.

Because an ultrasonic beam typically covers a sector-shaped region, a single ultrasonic measurement cannot
directly determine the orientation of a detected object. During forward motion, variations in speed and
lateral offset change echo timing and can introduce measurement ambiguity. Therefore, in the automated
parking assist (APA) process, the vehicle tracks its trajectory and continuously corrects observations using
real-time data from the full sensor set (e.g., 12 ultrasonic sensors), enabling robust space detection and parking
execution.

Figure 1 illustrates the image-data processing pipeline. Based on the imaging characteristics of spatial
scanning, a camera-based ranging model is established by constructing a visual projection relationship and
computing distances from camera to corresponding feature points in real space. A comprehensive evaluation
model is then used to estimate final parking-space length and width, as well as the relative distance between
the entering vehicle and the parking space. In practice, the fusion scheme combines ultrasonic sensing with
AVM (around-view monitoring) fusion technology to support parking-space detection, path planning, vehicle
localization, and steering-control tracking, thereby enabling automatic parking into the target slot. The APA
controller is integrated into the AVM panoramic controller. The sensing configuration includes six ultrasonic
sensors and one HD camera at both the front and rear of the vehicle, plus one HD camera at each of the left
and right rearview mirrors, yielding a total of twelve ultrasonic sensors and four HD camera modules.
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Sensor Models

Camera Model

The mapping from a three-dimensional point to a two-dimensional image can be described by a geometric
camera model, typically decomposed into a projection model and a distortion model. Common projection
models include the pinhole model, omnidirectional models, and uniform projection models; among these, the
pinhole camera model is most widely used. It idealizes imaging as projection through a virtual pinhole, with
the imaging plane located opposite the pinhole. Due to inversion through the pinhole, the formed image is
flipped relative to the real scene. Under the pinhole model, the relationship between a 3D point and its image
projection follows from similar triangles. For a point P(X ,Y,Z) and its pixel coordinate p(u,v) on the image
plane:

u = fx
X
Z
+ cx,

v = fy
Y
Z
+ cy,

(1)

where fx and fy denote focal lengths in pixel units along the horizontal and vertical directions, respectively,
and (cx,cy) is the principal point (the intersection of the optical axis with the image plane in pixel coordinates).

To improve imaging quality, cameras employ lens modules; lens geometry alters light propagation so that
straight lines in the environment may appear curved on the image plane. This effect is commonly modeled as
radial distortion (e.g., barrel or pincushion distortion). Additionally, slight angular misalignment between
the lens and the image plane can introduce tangential distortion. A common approach is to model distortion
with a polynomial form. Considering a normalized-plane point p(x,y) with radius r, radial distortion may be
expressed as:

xdistorted = x
(
1+ k1r2 + k2r4 + k3r6) ,

ydistorted = y
(
1+ k1r2 + k2r4 + k3r6) , (2)

and tangential distortion can be corrected using coefficients p1, p2:

xdistorted = x+2p1xy+ p2(r2 +2x2),

ydistorted = y+ p1(r2 +2y2)+2p2xy.
(3)

Combining radial and tangential terms yields:

xdistorted = x
(
1+ k1r2 + k2r4 + k3r6)+2p1xy+ p2(r2 +2x2),

ydistorted = y
(
1+ k1r2 + k2r4 + k3r6)+ p1(r2 +2y2)+2p2xy.

(4)

Finally, distorted normalized coordinates are mapped back to pixel coordinates using intrinsic parameters:

u = fxxdistorted + cx,

v = fyydistorted + cy.
(5)

IMU Measurement and Motion Modeling

An IMU typically contains three-axis accelerometers and three-axis gyroscopes (six degrees of freedom),
which measure linear acceleration and angular velocity along three orthogonal directions. Attitude estimation
often requires time integration of these measurements, which can accumulate error; therefore, IMU error
sources must be modeled.
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IMU errors are commonly separated into deterministic components (e.g., bias, scale factor, and non-
orthogonality) that can be estimated via calibration, and stochastic components (e.g., measurement noise and
bias random walk), typically modeled as Gaussian noise. A standard IMU measurement model is:

aB = RB
W (aW −gW )+ba +na,

ω
B = ω

B
true +bω +nω ,

(6)

where aB and ωB denote accelerometer and gyroscope measurements, aW is the true acceleration in the world
frame {W}, gW is gravity, RB

W is the rotation from {W} to the body frame {B}, ba and bω are biases, and na

and nω are measurement noises.

Wheel Tachometer Kinematic Modeling

Real vehicles generally follow Ackermann steering geometry, where steering is controlled by the front-wheel
mechanism and a differential distributes torque across the rear wheels, enabling different wheel speeds during
turns. For simplified modeling, the Ackermann model is often reduced to a bicycle model. Under this
simplification, the vehicle motion is treated as planar, and the left and right wheels on the same axle are
assumed to share an equivalent speed and steering angle.

Given the average front-wheel steering angle θH and rear-wheel speed vR, the velocity components of the
vehicle’s center of mass in the x and y directions, and the yaw rate, can be expressed as:

ψ̇ =
vR

L
tanθH ,

Ẋ = vR cosψ,

Ẏ = vR sinψ,

(7)

where L is the wheelbase and ψ is the vehicle yaw angle.

GNSS/RTK Positioning Considerations

GNSS estimates receiver position via trilateration using satellite signal time-of-flight and ephemeris data. In
practice, positioning accuracy is degraded by long propagation distances and environmental effects such as
ionospheric and tropospheric delays, weather conditions, and Doppler effects due to satellite motion, leading
to non-negligible errors.

To reduce these errors, RTK (Real-Time Kinematic) techniques apply real-time differential corrections
between a fixed reference station and a mobile receiver, enabling centimeter-level accuracy. The reference
station, knowing its precise coordinates, estimates propagation errors and transmits correction information to
the mobile receiver, which uses the differential data to correct its measurements.

Despite its high accuracy, RTK can become unreliable in underground garages or heavily occluded scenes
where satellite signals are blocked. Therefore, for high-precision and high-robustness positioning in au-
tonomous parking, GNSS/RTK must be fused with additional onboard sensors.
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Parking-Problem Modeling

Vehicle Kinematic Model

In autonomous valet parking, vehicle speeds are typically limited to no more than 15km/h on internal roads
and about 5km/h during the parking maneuver. Under these low-speed, non-extreme conditions, the following
assumptions are reasonable:

1. Tire lateral slip is negligible; wheel velocity directions align with steering directions.

2. Only planar motion on the XOY plane is considered.

3. Front wheels (and rear wheels) can be approximated by a single equivalent wheel, enabling a bicycle-
model representation.

4. The vehicle body and suspension are treated as rigid.

Accordingly, the vehicle can be modeled as a rigid body moving in 2D, with the vehicle coordinate origin
at the rear-axle center. Let v be the velocity at the rear axle center, δ the front-wheel steering angle, L the
wheelbase, L f the front overhang, Lr the rear overhang, vehicle width 2b, and heading angle θ relative to the
world x-axis. The rear-axle center is Ob(x,y). A simplified kinematic model is: ẋ

ẏ
θ̇

=

vcosθ

vsinθ
v
L tanδ

 . (8)

More generally,
ψ̇ = f (ψ,u), (9)

with state and control defined as:
ψ = [x, y, θ ]T , (10)

u = [v, δ ]T . (11)

Parking-Lot Map Models

A parking-lot environment is constructed in the Gazebo simulation platform. The simulated lot includes a
smart-parking capability that can identify the number of vacant spaces, space coordinates, lane geometry, and
congestion indicators. To support autonomous valet parking, two complementary representations are built for
the structured parking-lot scene: a topological map and a raster map.

(1) Topological map. The topological map abstracts the environment into nodes and connecting edges. Nodes
represent key locations such as corners, entrances, elevators, or intersections, while edges represent traversable
connections such as lanes or corridors. Compared with metric maps, topological maps are compact and
easier to update, which supports route planning and obstacle avoidance. Following common smart-parking
descriptions, the model adopts these conventions:

• Parking nodes record spatial coordinates and occupancy status. The system can query space location
and whether it is idle or occupied via node identifiers.
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• Lanes and intersections store geometric extent and congestion information, retrievable via lane and
intersection identifiers.

(2) Raster map. Because the path planner must consider obstacle positions and contours, a grid-based raster
map is also constructed. Raster maps store environmental occupancy in a 2D matrix, enabling simple storage
and fast random access. Grid resolution can be selected based on application needs. Two raster maps are
used: a global static occupancy grid for all static obstacles (without inflation, storing only occupancy), and a
local dynamic grid centered on the rear-axle center that updates in real time as the vehicle moves. The local
replanning stage uses inflated-grid surrogate values to generate safe, feasible local trajectories.

Vehicle Collision Detection

Collision avoidance is required throughout autonomous valet parking, making collision constraints essential.
Common vehicle-contour approximations include single-circle, double-circle, and rectangular models. This
work adopts a rectangular model because it closely matches the vehicle outline, reduces redundant safety
margins, and improves planning precision in narrow environments. However, a rectangle is not rotation-
invariant in the world frame, so its vertices must be updated based on the current vehicle state.

Let the rear-axle center be Ob(xr,yr). Denote the rectangle vertices as A(xa,ya) (left-rear), B(xb,yb) (right-
rear), C(xc,yc) (right-front), and D(xd ,yd) (left-front). Using the vehicle geometry and heading θ , vertex
coordinates can be computed (as in Eqs. (12)–(15) of the original formulation). Collision checking is
performed by sampling points along the rectangle boundary at equal intervals and testing whether any sample
lies inside an obstacle region; if so, a collision is declared.

Autonomous Parking Path-Planning Algorithm Design

To improve planning efficiency in narrow parking spaces typical of closed residential areas, this section
proposes enhancements to a Hybrid A⋆ path-planning method [25].

Cost Maps and Collision Detection

(1) Rasterized cost map. The search space is represented by a rasterized cost map storing information about
traversable areas, obstacles, and non-crossable regions. Each grid cell is assigned a value in [0,1] representing
traversal cost. Grid states include Free, Occupied, and Unknown. The Occupied state may further include
true obstacles and inflated (buffer) regions. Classification is determined using an occupied threshold and a
passable threshold.

(2) Inflated (expansion) collision detection. An expansion-based collision detection strategy is used to
determine whether a vehicle pose is in collision:

1. Compute an inflation radius from vehicle parameters. Initially, the radius corresponds to the smallest
set of overlapping circles that fully covers the vehicle, with circle centers placed along the vehicle
longitudinal axis. Increasing the number of circles reduces the required radius and can improve detection
accuracy.

2. Inflate obstacle grids outward by the inflation radius. If the radius is not an integer multiple of grid size,
it is rounded up to the nearest multiple.
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3. Mark all grids within the inflated obstacle region as occupied and thus non-traversable.

4. Check whether the centers of the overlapping circles lie inside inflated grids. Outcomes include: (a)
collision if any center is inside the inflated region; (b) no collision if no center is inside and the grid
surrogate value is below the passable threshold; (c) indeterminate if no center is inside but the surrogate
value exceeds the passable threshold, in which case traversal is disallowed.

Hybrid A⋆ Path Planning

(1) Hybrid state-space representation. Hybrid A⋆ maintains both continuous and discretized (grid-indexed)
representations of the vehicle state. The continuous state (x,y,θ) ensures smooth, drivable trajectories, where
(x,y) is the rear-axle center position and θ is heading. For efficient grid search, the continuous state is
discretized into (x̃, ỹ, θ̃) using:

x̃ =
x−Ox

σ
, ỹ =

y−Oy

σ
, θ̃ =

θ

σθ

, (12)

where (Ox,Oy) is the cost-map origin, σ is grid-cell side length, and σθ is the discrete heading increment.

(2) Node-expansion constraints. Node expansion is realized by forward/backward motion primitives with a
step length and steering constraints:

• The number of sub-steps in one expansion is a positive odd integer, and the expansion length l must
exit the current grid:

l > 2σ . (13)

• Steering is bounded by the maximum front-wheel angle δmax:

−δmax ≤ δ ≤ δmax. (14)

• Steering change ∆δ is quantized as an integer multiple of σθ :

∆δ = kσθ , k ∈ Z. (15)

(3) Cost-function formulation. Nodes are evaluated using a cost function f (n) to select the best candidate for
expansion:

f (n) = λng(n)+h(n)+ cn, (16)

where g(n) is the accumulated cost from the start node to the current node:

g(n) =
n

∑
i=1

li, (17)

h(n) is a heuristic estimate of the remaining cost to the goal (guiding search toward the target), λn is a penalty
coefficient controlling preference for forward vs. reverse expansion:

λn =

{
cforward, if the expansion step is forward,
creverse, if the expansion step is backward,

(18)
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and cn penalizes switching direction to reduce frequent alternation between forward and reverse:

cn =

{
0, if the expansion direction is unchanged,
cdirection, if the expansion direction changes.

(19)

(4) Stepwise Reeds–Shepp connection. During node expansion, at intervals of lRS the algorithm attempts to
connect the current best node to the goal using a Reeds–Shepp (RS) curve. If the RS connection is collision-
free, node expansion stops and the RS segment is appended to form the final path. If the RS connection
collides, normal expansion continues. This strategy can reduce computation in relatively open regions but
may be inefficient in cluttered spaces where most RS connections are invalid, increasing overall search time.

Reverse-Expansion Strategy for Confined Parking Spaces

For vertical and diagonal parking in tight spaces, this work modifies conventional Hybrid A⋆ via a reverse-
expansion design. The key idea is to swap the start and goal states when the goal lies inside a confined region,
so that node expansion begins within the narrow slot and progresses outward into more open space. This can
substantially improve planning efficiency for constrained maneuvers.

SIMULATION EXPERIMENTS FOR AUTONOMOUS PARKING PATH PLANNING

This section evaluates the proposed Hybrid A⋆ path-planning method through autonomous parking simulations,
with the aim of verifying feasibility, efficiency, and robustness under representative parking-lot conditions.

Simulation Setup and Result Analysis

Global Path Planning

To examine the applicability of the reverse-expansion Hybrid A⋆ strategy for global parking-lot navigation, a
set of simulations is conducted in a structured environment. The parking lot is modeled as an 80m×60m
area, with the lower-left corner defined as the coordinate origin. The lot contains five rows of available parking
spaces. The vehicle starts near the upper-left region of the map and navigates toward the vicinity of the
parking rows, providing an initial approach trajectory prior to executing the final parking maneuver.

For routes that include constrained segments, the planner is combined with Reeds–Shepp connections so that
both forward and reverse motion primitives are considered under vehicle kinematic constraints. In complex
passages, the planned trajectory may include direction switches (forward/reverse alternation) in order to
satisfy feasibility requirements while maintaining collision-free motion through narrow regions.

When the terminal parking pose is changed (i.e., different end configurations are specified), the reverse-
expansion Hybrid A⋆ method generates correspondingly different global approach paths. Across several
representative scenarios, planning times remain low and the algorithm consistently produces complete, feasible
trajectories within a short computation window. Table 1 summarizes the planning-time results for four tested
global-planning cases; all scenarios finish within 1.4s, demonstrating that the planner can generate global
parking routes efficiently.

The weighting terms in the reverse-expansion Hybrid A⋆ cost function have a pronounced influence on vertical-
parking trajectories, particularly with respect to steering effort and the frequency of switching between forward
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Table 1: Global path-planning time for representative scenarios.
Scenario Case 1 Case 2 Case 3 Case 4
Planning time (s) 0.75 1.32 1.01 1.05

and reverse motion. To illustrate this sensitivity, three configurations are compared under identical start
and goal states but with different cost weights. In Case 1, the penalty for switching driving direction is set
high, so the planner tends to accept larger reverse-clearance requirements in exchange for fewer direction
changes. In Case 2, the steering penalty is reduced, producing shorter paths that may require larger steering
angles. In Case 3, the steering penalty is increased while the direction-switch penalty is reduced; the resulting
trajectories are more consistent with practical parking behavior and typically yield improved driving comfort
and maneuver smoothness.

Parking-Entry Path Planning

To validate reverse-expansion Hybrid A⋆ performance in the local parking-entry stage, a simulation envi-
ronment consistent with the global setup is constructed (80m×60m), abstracted as five rows with twelve
parking spaces per row.

For vertical parking entry, if direction switching is not allowed and the vehicle must enter head-first, the
planned trajectory may initially move away from the slot to create sufficient maneuvering room, which implies
a larger required free space. When reverse motion is permitted, the vehicle can complete the maneuver within
a tighter slot by switching driving direction, thereby reducing the minimum spatial requirement for successful
parking.

For parallel parking, after specifying slot parameters and the initial pose, the planner outputs a time-indexed
sequence of vehicle states along the maneuver. The resulting trajectory can be interpreted as a combination
of two tangent-arc segments (a gyratory-curve style maneuver). The planned motion remains kinematically
feasible and yields a safe approach into the designated parking pose.

Nearby obstacles around the slot can alter the geometry of the planned path. Under otherwise fixed slot
geometry and vehicle dimensions, adding obstacles typically increases the turning radii of the arc segments and
results in a more conservative trajectory. In these obstacle-present scenarios, the vehicle remains collision-free
while maintaining feasibility, at the cost of a larger maneuver envelope relative to obstacle-free conditions. In
simulation-based measurements at the slot boundary, the intersection deviation remains small (e.g., on the
order of centimeters), and the residual error is acceptable given vehicle curvature and the clearance maintained
between the vehicle body and the slot boundaries.

Parking-Scenario Verification

To further test the proposed reverse-expansion Hybrid A⋆ method, additional simulations are carried out across
varying parking-space dimensions and parking speeds, focusing on how these factors affect the gyratory-curve
(two-arc) parking behavior.
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Different Parking-Space Sizes

Two parallel-parking slot sizes are tested to evaluate sensitivity to space dimensions. The terminal position is
fixed at (1.163,−0.975), the longitudinal coordinate of the start pose is set to y0 = 2.1, and the vehicle speed
is held constant at 3km/h. The two slots are:

• 7.2m×2.6m (length × width),

• 7.4m×2.4m.

The simulation shows that the planned trajectories under the two slot sizes nearly overlap: the rear-axle-center
paths coincide, the vehicle pose evolution is essentially identical, and both the heading-angle profile and
curvature profile match closely. This indicates that once the slot satisfies the minimum feasibility requirement
and the end pose, start longitudinal coordinate, and speed are fixed, moderate increases in slot dimensions
do not materially change the planned path. However, increasing slot length improves safety margins by
increasing clearance to the outer upper corner during the maneuver, while increasing slot width provides
comparatively less noticeable safety benefit in this setup.

Different Parking Speeds

To examine the effect of speed, two constant-speed conditions are compared using a 7.4m×2.4m parallel-
parking slot. The terminal position is fixed at (1.163,−0.975), the start longitudinal coordinate is set to
y0 = 1.6, and speeds are 3km/h and 6km/h.

The planned paths differ between the two speeds even with the same end pose and the same start longitudinal
coordinate. A key change is that the required aisle (approach) length increases at higher speed: the 6km/h
condition begins from a start pose with a larger horizontal coordinate, implying a longer maneuver corridor to
satisfy curvature and feasibility constraints. Both speed conditions still allow the vehicle to park safely into
the target position, but the lower-speed case exhibits larger body-orientation variation during the maneuver.

The heading-angle profiles for both speeds show a bell-shaped trend with respect to horizontal progression,
but the slower-speed trajectory typically reaches a larger maximum heading angle earlier (i.e., at a smaller
horizontal coordinate), reflecting a more rearward and upward maneuver relative to the higher-speed case.
Similarly, curvature evolves more rapidly at the lower speed, reaching maximum curvature over a shorter
horizontal distance, whereas the higher-speed condition spreads the curvature change over a longer arc length.
This implies that increasing speed enlarges the gyratory-curve segment and increases the space required for a
feasible maneuver.

Simulation-based minimum-slot calculations indicate that the 6km/h condition requires approximately
7.058m×2.205m, while the 3km/h condition requires about 6.821m×2.164m, corresponding to an increase
of roughly 0.207m in required length and 0.041m in required width for the higher-speed case. Therefore,
minimum feasible space depends on parking speed: larger speeds demand slightly larger slots. Since
autonomous parking typically operates at low speeds, the increase in minimum required space remains modest
within the tested speed range, and standard residential parking dimensions can generally satisfy the planner’s
feasibility constraints.
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CONCLUSION

This paper addressed the autonomous parking challenge in closed residential areas, where constrained
geometry, narrow passages, and dense parking layouts make manual parking inefficient and risky. To
respond to these conditions, an autonomous parking framework was developed around multi-sensor fusion
localization and an improved path-planning strategy tailored to tight environments. The proposed system
integrates complementary sensing modalities—including ultrasonic sensors, high-definition cameras, IMU
measurements, and wheel-speed information (with GNSS/RTK considered where available)—to enhance
environmental perception and vehicle-state estimation, thereby providing reliable inputs for planning and
control.

On the planning side, a reverse-expansion Hybrid A⋆ method was designed to improve search efficiency when
the goal lies inside confined parking spaces. By expanding nodes from the narrow target region toward a more
open area and leveraging collision-aware cost mapping and stepwise Reeds–Shepp connections, the planner
produces kinematically feasible, collision-free trajectories while reducing unnecessary exploration. Simulation
studies in representative parking-lot environments validated that the approach can generate complete global
approach paths and local parking-entry maneuvers with low computation time. The experiments further
demonstrated that cost-function weighting significantly influences maneuver comfort and direction-switch
frequency, and that the proposed tuning strategy yields trajectories that are more consistent with practical
parking behavior. Additional scenario tests confirmed that, once minimum geometric feasibility is satisfied,
moderate increases in parking-space size have limited effect on the planned path, whereas higher parking
speeds modestly increase the minimum space required for safe execution.

Overall, the results indicate that combining multi-sensor fusion localization with the reverse-expansion Hybrid
A⋆ planner offers an effective and practical solution for autonomous parking in closed residential settings.
Future work will focus on extending the approach to real-vehicle deployment, incorporating dynamic obstacle
prediction and uncertainty-aware fusion, improving planning performance in highly cluttered scenes, and
integrating learning-based components and V2X information to further enhance robustness, safety, and user
comfort in complex residential parking environments.

REFERENCES

[1] Varbuchta, P., & Hromádka, V. (2023). Index of Residential Development: Evaluation of the Possibility
of New Residential Construction Depending on the City Plan. Buildings, 13(12), 3016.

[2] Buttimer, A. (2015). Social space and the planning of residential areas. In The human experience of
space and place (pp. 21-54). Routledge.

[3] Wen, Z., Zhang, S., Yang, Y., Zheng, X., Song, Z., Zhou, Y., & Hao, J. (2023). How does enclosed
private residential green space impact accessibility equity in urban regions? A case study in Shenzhen,
China. Urban Forestry & Urban Greening, 85, 127968.

[4] Cihan, M. M., & Erdönmez Dinçer, M. E. (2018). An Examination of the Relationship Between
Enclosed Residential Areas, Other Residences, and Public Spaces. MEGARON/YILDIZ TECHNICAL
UNIVERSITY, FACULTY OF ARCHITECTURE E-JOURNAL, 13(1), 102-116.

[5] Gao, X., Million, A., & Wang, R. (2023). Gating and gatedness: interpreting the procedural refiguration
of an enclosed residential compound in Guangzhou. Technische Universität Berlin.



Journal of Management and Planning Research
2024, 1(1), 17-30 29

[6] Yan, T., Jin, H., & Zhao, H. (2019). The relationship between the form of enclosed residential areas and
microclimate in severe cold area of China. In Sustainability in Energy and Buildings: Proceedings of
SEB 2019 (pp. 135-146). Singapore: Springer Singapore.

[7] Li, Y., Chen, Q., Cheng, Q., Li, K., Cao, B., & Huang, Y. (2022). Evaluating the influence of different
layouts of residential buildings on the urban thermal environment. Sustainability, 14(16), 10227.

[8] Tan, T. H. (2016). Residential satisfaction in gated communities: Case study of desa park city, Kuala
Lumpur, Malaysia. Property Management, 34(2), 84-99.

[9] Li, M., & Xie, J. (2023). Social and spatial governance: the history of enclosed neighborhoods in urban
China. Journal of Urban History, 49(4), 723-744.

[10] Ashrafi, K., Motlagh, M. S. P., Mousavi, M. S., Niksokhan, M. H., & Vosoughifar, H. R. (2017). An
experimental and numerical investigation of velocity in an enclosed residential complex parking area.
Heat and Mass Transfer, 53(2), 451-463.

[11] Gabbe, C. J., Pierce, G., & Clowers, G. (2020). Parking policy: The effects of residential minimum
parking requirements in Seattle. Land Use Policy, 91, 104053.

[12] De Gruyter, C., Davies, L., & Truong, L. T. (2021). Examining spatial variations in minimum residential
parking requirements in Melbourne. Journal of Transport Geography, 94, 103096.

[13] Duvanova, I., Simankina, T., Shevchenko, A., Musorina, T., & Yufereva, A. (2016). Optimize the use of
a parking space in a residential area. Procedia Engineering, 165, 1784-1793.

[14] Dibaei, M., Zheng, X., Jiang, K., Abbas, R., Liu, S., Zhang, Y., ... & Yu, S. (2020). Attacks and defences
on intelligent connected vehicles: A survey. Digital Communications and Networks, 6(4), 399-421.

[15] Wang, B., Han, Y., Wang, S., Tian, D., Cai, M., Liu, M., & Wang, L. (2022). A review of intelligent
connected vehicle cooperative driving development. Mathematics, 10(19), 3635.

[16] Liu, Y., & Fang, X. (2016). Big wave of the intelligent connected vehicles. China Communications,
13(2), 27-41.

[17] Lee, J., Huang, H., Wang, J., & Quddus, M. (2022). Road safety under the environment of intelligent
connected vehicles. Accident Analysis & Prevention, 170, 106645.

[18] Mladenovic, M., Delot, T., Laporte, G., & Wilbaut, C. (2020). The parking allocation problem for
connected vehicles. Journal of Heuristics, 26, 377-399.

[19] Channamallu, S. S., Kermanshachi, S., Rosenberger, J. M., & Pamidimukkala, A. (2023). A review of
smart parking systems. Transportation Research Procedia, 73, 289-296.

[20] Chan, T. K., & Chin, C. S. (2021). Review of autonomous intelligent vehicles for urban driving and
parking. Electronics, 10(9), 1021.

[21] Sayarshad, H. (2023). Designing intelligent public parking locations for autonomous vehicles. Expert
Systems with Applications, 222, 119810.

[22] Li, C., Wang, S., Li, X., Zhao, F., & Yu, R. (2020). Distributed perception and model inference with
intelligent connected vehicles in smart cities. Ad Hoc Networks, 103, 102152.

[23] Hongbo, G., Guotao, X., Xinyu, Z., & Bo, C. (2017). Autonomous parking control for intelligent
vehicles based on a novel algorithm. The Journal of China Universities of Posts and Telecommunications,
24(4), 51-56.



Journal of Management and Planning Research
2024, 1(1), 17-30 30

[24] Paidi, V., Fleyeh, H., Håkansson, J., & Nyberg, R. G. (2018). Smart parking sensors, technologies and
applications for open parking lots: a review. IET Intelligent Transport Systems, 12(8), 735-741.

[25] Kim Dongchan & Huh Kunsoo. (2023). Neural Motion Planning for Autonomous Parking. International
Journal of Control, Automation and Systems,21(4),1309-1318.

Donald Shoup, Department of Urban Planning, University of California, Los Angeles, Los Angeles, CA
90095-1656, USA

Lijun Liu, Department of Urban Planning, University of California, Los Angeles, Los Angeles, CA 90095-
1656, USA; liu.lijun@ucla.edu

Manuscript Published; 15 August 2024.


	Introduction
	Autonomous Parking Path Planning Based on Multi-Sensor Fusion Localization
	Environmental Data Acquisition System
	Sensor Models
	Camera Model
	IMU Measurement and Motion Modeling
	Wheel Tachometer Kinematic Modeling
	GNSS/RTK Positioning Considerations

	Parking-Problem Modeling
	Vehicle Kinematic Model
	Parking-Lot Map Models
	Vehicle Collision Detection

	Autonomous Parking Path-Planning Algorithm Design
	Cost Maps and Collision Detection
	Hybrid A Path Planning
	Reverse-Expansion Strategy for Confined Parking Spaces


	Simulation Experiments for Autonomous Parking Path Planning
	Simulation Setup and Result Analysis
	Global Path Planning
	Parking-Entry Path Planning

	Parking-Scenario Verification
	Different Parking-Space Sizes
	Different Parking Speeds


	Conclusion

