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Landscape aesthetic research uses diverse judgment methods—Likert ratings, ranking tasks, pairwise comparisons,
and best—worst scaling (BWS)—yet method choice can systematically alter measurement reliability, discriminability,
bias exposure, and respondent burden, thereby changing downstream inferences about design attributes and external
outcomes (Vvisit intention, perceived restorativeness, willingness-to-pay). We present a unified experimental framework
and reporting template for head-to-head method comparison under a shared stimulus set and common external validity
criteria. To ensure submission-ready quantitative evidence in the absence of an attached empirical dataset, we provide
results from a fully specified generative model (stimuli J = 48 across four contexts; participants N = 800 randomized
across four methods, test—retest subset; dropout and attention failures), including identification diagnostics for ranking
designs, robustness stress tests, and sensitivity analyses. Across methods, comparative-choice approaches (pairwise,
BWS) exhibit substantially higher utility-scale precision (discriminability) than single-item ratings at comparable
sample size, but at increased time and dropout; ranking performance depends critically on design connectivity, with
disconnected ranking blocks yielding non-identifiable global scales. We conclude with an evidence-based decision guide
for selecting judgment methods under constraints on time, sample size, discrimination needs, and the necessity of global
comparability across contexts.
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INTRODUCTION AND RELATED WORK

Landscape aesthetic preference is central to environmental psychology, landscape architecture, and planning
because it shapes how people choose, use, and support environments, affecting visitation, perceived restoration,
and acceptance of design or conservation actions (Hartig et al., 1997; Kaplan & Kaplan, 1989; Ulrich, 1983).
Core theories link preference to information-processing and affective responses to environmental cues,
highlighting naturalness, coherence, mystery, and care/maintenance signals as interpretable predictors of
appraisal and restorative expectations (Berto, 2005; Kaplan & Kaplan, 1989; Ulrich, 1983). Preference
is commonly elicited with visual media (photos, photo-simulations, immersive formats), consistent with
scenic-quality traditions, but this also raises questions about measurement validity and comparability across
formats (Daniel, 1976, 2001; Tveit et al., 2006).

A key methodological problem is that preference is latent: it must be inferred from judgment tasks that impose
specific cognitive demands and response constraints (Krosnick, 1991; Likert, 1932). The same scenes can
yield different apparent preferences under ratings, rankings, or choices—especially when stimuli are similar,
visually complex, or evaluated under fatigue and satisficing—shifting estimated attribute effects, uncertainty,
and discriminability (King et al., 2004; Krosnick, 1991). Task artifacts can also introduce systematic bias (e.g.,
scale-use heterogeneity, anchoring, response styles), limiting cross-study synthesis and potentially misguiding
design recommendations (King et al., 2004; Krosnick, 1991; Train, 2009).

Prior work can be synthesized around measurement assumptions and inference goals. Rating scales are
efficient and intuitive, but they assume respondents map internal preference onto a shared numeric scale;
heterogeneous scale use and anchoring can distort between-scene differences and undermine comparisons
across groups or studies (King et al., 2004; Krosnick, 1991; Likert, 1932). These issues are salient in
landscape evaluation where differences are subtle and response styles may vary by expertise, culture, or
familiarity (King et al., 2004; Tveit et al., 2006). Rankings force trade-offs and can increase differentiation,
yet they do not directly produce cardinal utilities and become burdensome as set size grows (Train, 2009).
Critically, global scaling from ranks depends on the connectivity of the implied comparison graph; blocked
or within-context ranking can yield disconnected graphs, making a single global scale unidentified without
bridging designs (Hunter, 2004). This identification condition is often unreported but determines whether
across-context comparisons are statistically meaningful (Hunter, 2004). Comparative-choice methods
(pairwise comparisons, best—worst scaling) align with established comparative-judgment and random-utility
models, often improving discriminability among similar stimuli and enabling coherent uncertainty estimates
via Thurstone/Bradley—Terry-type frameworks (Bradley & Terry, 1952; Hunter, 2004; Thurstone, 1927).
Best—worst scaling can reduce some scale-use artifacts but requires careful design and may increase burden
(Louviere et al., 2015; McFadden, 1974; Train, 2009). Sorting approaches such as Q-sort support holistic
appraisal and segmentation, but their outputs are not always directly comparable to utility-based estimates
used for prediction (Brown, 1993; Stephenson, 1953; Train, 2009).

Despite clear theoretical foundations, the field still lacks a standardized head-to-head evaluation on a shared
stimulus set that jointly reports (i) reliability/stability, (ii) discriminability/precision for similar scenes, (iii)
predictive validity for external outcomes (e.g., visit intention, perceived restorativeness, willingness-to-
pay), (iv) respondent burden and data-quality loss, and (v) explicit identification diagnostics, especially
connectivity requirements for global scaling from ranking/choice data (Hunter, 2004; Train, 2009; Tveit et al.,
2006). Consequently, method selection remains largely heuristic, and cross-study differences may reflect task
artifacts rather than substantive preference variation (King et al., 2004; Krosnick, 1991).
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FRAMEWORK AND HYPOTHESES

Landscape aesthetic preference is not directly observable; it is a latent evaluative state that must be inferred
from structured judgments elicited under a particular response format. We model preference as respondent-
specific latent utility over scenes and treat “judgment method” as a measurement operator that maps latent
utility to observed responses. This perspective allows method comparisons to be framed as comparisons of (i)
the information each task extracts about utility differences, (ii) the susceptibility of the measurement channel
to systematic response distortions, and (iii) the identifiability conditions required to recover a single global
latent scale across heterogeneous stimuli.

Let i € {1,...,N} index respondents and j € {1,...,J} index scenes. Each scene has a coded attribute
vector X; € R” and a scalar complexity index c; capturing visual density/heterogeneity. Each respondent has
covariates z; and an expertise measure e¢; (binary or continuous). The inferential target is a common latent
utility field u;; that is comparable across methods:

wij = Po + X,,TB + YeCj + Ye€i + YeeCjei + ai + bj + Nij, (D

where a; ~ .4 (0,02) captures stable respondent-level evaluation tendencies (e.g., general positivity), b o~
(0, sz) captures unobserved scene-level appeal not explained by x; and c;, and 7);; represents idiosyncratic
noise. The coefficients B quantify the attribute-to-preference mapping that landscape research typically seeks,
while (7., Y., Yee) encode moderation by complexity and expertise.

The central methodological claim is that the data-generating process differs by method m € .# even when the
latent utility target (1) is shared. Let &, (+) denote the observation operator under method m. Then observed

responses are generated as
y(m) ~ ﬁm(uij; Gm)a

where 6,, contains method-specific parameters (e.g., thresholds, response-style parameters, or choice-noise
scales). Differences in &), induce systematic differences in four evaluative properties that our study quantifies:
reliability (stability under repeated measurement), discriminability/precision (ability to resolve small utility
gaps), bias exposure (vulnerability to response-style distortions), and identification (whether a global latent
scale is uniquely recoverable given the design).

For Likert ratings, the measured quantity is a discretized and respondent-mapped version of latent utility:

(L) (L)

yii =k <= T <6i+siuij+8ijL < Tk, kedl,...,K}, )

where {7;} are ordered cutpoints, (J;,s;) capture respondent-specific location and scale (anchoring and
scale-use heterogeneity), and el.(jL) is residual error. This formulation makes explicit that ratings conflate the
latent utility signal with respondent-specific mapping parameters; cross-respondent comparability is therefore
fragile when (&;,s;) are heterogeneous, and precision can be attenuated when scenes are similar and ratings
compress toward central categories (King et al., 2004; Krosnick, 1991; Likert, 1932).

Pairwise comparisons and best—worst scaling (BWS) concentrate information on differences in utility, which
mitigates some mapping artifacts inherent in absolute scales. For a pair (j, k), a Bradley—Terry/Thurstone-type

model posits
P 1) Wjj — Uik
Pr(yi(ch) = 1) = G<] - > , 3)

1

where o (+) is logistic (Bradley—Terry) or probit (Thurstone), and k; > 0 is a respondent-specific choice-noise
scale (Bradley & Terry, 1952; Hunter, 2004; Thurstone, 1927). Under BWS, respondent i observes a set S and
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selects the most and least preferred items, commonly modeled as a max-diff choice:

Pr(j*,0% | S) < exp<uij*;ui£*> . )
1

Because both (3) and (4) are driven by utility differences, they provide higher Fisher information per evaluated
alternative when latent utilities are close, at the cost of more trials and higher burden (Louviere et al., 2015;
McFadden, 1974; Train, 2009). Importantly, the same respondent-specific noise parameter k; provides a
coherent locus for modeling fatigue and satisficing as a function of task length and complexity.

Ranking can be interpreted as a sequence of discrete choices (e.g., Plackett—Luce) or reduced to implied paired
wins. However, unlike pairwise and BWS tasks that typically mix items across the full stimulus set, ranking is
frequently implemented in blocks (e.g., within-context rankings). In that case, the ability to recover a single
global utility scale depends on a design property rather than on estimation alone: the induced comparison
graph over stimuli must be connected. If blocks are disjoint, utilities are identifiable only up to independent
additive constants within each component, making across-block comparisons undefined without bridging or
anchors (ident section) (Hunter, 2004). This identification constraint is central to our framework because it
distinguishes genuine measurement limitations from mere estimation variability.

The framework in 1 follows directly from the observation-model view. Method choice determines how latent
utilities are sampled and distorted: ratings are susceptible to respondent-specific mapping parameters (J;, s;),
comparative choices are governed by choice noise k; and trial design, and ranking requires connectivity for
global identification. We expect systematic moderation by complexity c¢; because increasing visual complexity

elevates perceptual and cognitive load, which can inflate residual variability (larger Var(el.(jL)) and/or effective
k;) and encourage satisficing in longer tasks (Krosnick, 1991). Expertise ¢; is expected to reduce effective
noise through improved cue integration and more stable internal anchors, yielding stronger benefits for

comparative methods when scenes are information-rich and attribute trade-offs are subtle.
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Figure 1: Conceptual framework: judgment methods specify different observation models for latent preference,
shaping reliability, precision, bias exposure, and identifiability; these properties determine attribute inference
and external predictive validity, moderated by stimulus complexity and expertise.

The hypotheses are stated on estimands that are comparable across methods and directly tied to the observation
models above.
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* H1 (discriminability/precision). Holding sample size fixed, comparative-choice methods (pairwise, BWS)
yield higher discriminability than single-item ratings. Operationally, they produce larger utility precision

SD; (i)

~ SEa)
and/or larger signal-to-noise ratio
Var,(y.;)
7L Vari(yij)
with uncertainty quantified by respondent bootstrap. The prediction follows from the higher information

content of difference-based observations under (3)—(4) relative to discretized mappings (2) when alternatives
are close (Louviere et al., 2015; Train, 2009).

SNR =

* H2 (moderation by complexity and expertise). The precision advantage of comparative-choice methods
increases with scene complexity c; and is amplified with expertise e;. Formally, method-by-complexity
and method-by-expertise interactions are expected in variance/precision decompositions (e.g., increasing
effective x; for non-experts as c; increases), yielding larger marginal gains from comparative tasks for
high-complexity stimuli.

* RQ3 (external predictive validity). Which method yields preference estimates that best predict external
outcomes (visit intention, perceived restorativeness, WTP/support) under out-of-sample evaluation? Method
comparison is conducted using cross-validated predictive performance and calibration under a common
mixed-effects specification (McFadden, 1974; Train, 2009).

* RQ4 (burden—quality frontier). How do completion time, dropout, and perceived difficulty trade off
against precision and predictive performance across methods? This question is evaluated by jointly
reporting burden distributions and reduced-trial stress tests that map task length to utility uncertainty,
thereby quantifying the empirical burden—precision frontier.

METHODS

We use a randomized between-subjects design to estimate causal effects of judgment method on measurement
properties while avoiding learning and carryover that arise when respondents complete multiple formats. Each
respondent 7 is assigned to exactly one method m € {L,R, P,B} (Likert, ranking, pairwise, best—worst) via
computer-generated randomization. Where feasible, we apply stratified randomization (or minimization) on
pre-specified covariates (e.g., age, gender, education, and prior landscape exposure) to balance determinants
of both preference and response behavior. The study flow is: consent — instructions/practice — elicitation
using method m — external-validity items for a subset of scenes — burden/process measures.

The stimulus set consists of photo-simulated scenes (optionally also in immersive VR) spanning four contexts:
urban parks, waterfronts, streetscapes, and rural landscapes. Scenes are indexed by j € {1,...,J} and coded by
a shared attribute vector x; € R” with six canonical predictors (naturalness, coherence, mystery, maintenance
cues, biodiversity cues, water presence) plus a pre-defined complexity index c;. To avoid confounding method
with stimulus composition, we enforce distributional balance across arms:

Vme {L,R,P,B}: Du({xj,c;}) =~ 2({xj,¢;}),

where Z,,(-) is the empirical distribution of attributes/complexity shown under method m (accounting for
subset assignment) and Z(-) is the target distribution (cf. 1). Balance is achieved via constrained randomization
of scene subsets and, for pairwise/BWS, constrained generation of pairs/sets to match context frequencies,
complexity levels, and attribute coverage across arms.
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Attribute coding follows a pre-registered rubric with anchored examples. Each scene is double-coded;
disagreements beyond a tolerance are adjudicated by a third coder, and coder agreement is reported (e.g.,
ICC for continuous codes; weighted k for ordinal codes). For edited scenes (e.g., adding water or changing
maintenance cues), the editing protocol standardizes viewpoint, lighting, and composition to isolate intended
attribute changes.

Table 1: Stimulus structure and attribute coding scheme (implementation template).

Context Attributes emphasized Complexity levels
Urban parks naturalness, maintenance, biodiversity cues low / high
Waterfronts water features, coherence, mystery low / high
Streetscapes coherence, maintenance, greenery low / high
Rural landscapes naturalness, mystery, biodiversity cues low / high

Note. Context and complexity are balanced so each method encounters comparable distributions; within-method subset assignment
is constrained to preserve attribute coverage.

We recruit a general-public sample (target N = 300-1,000) via online panels or community sampling, requiring
language comprehension and adequate visual acuity. To assess expertise moderation, we optionally recruit an
expert subgroup (planning/landscape-related practice; target N = 50-150). Expertise is recorded as years of
training/practice (e;) and as a binary expert indicator; prior exposure and familiarity are measured to separate
expertise from place-based experience.

Data-quality controls include attention checks, minimum exposure times, and device constraints (e.g., min-
imum screen size; prevention of duplicate submissions where feasible). Exclusion rules are pre-specified
and reported. All arms use harmonized instructions, practice trials, standardized visual presentation, and
full logging of timestamps/response times; the response format is the primary manipulation. Likert rating
(m = L). Respondents rate each scene on a 7-point preference scale in randomized order, with optional breaks
and latency logging to model fatigue. Robustness analyses include within-respondent standardization and
ordinal threshold modeling. Ranking (m = R). Respondents rank scenes within blocks of size b (e.g., b = 6).
Because global scaling requires a connected comparison graph, we design blocks to ensure identifiability
using a small number of mixed-context bridging blocks and/or anchor scenes repeated across blocks. The
block generator limits repetition per respondent, balances contexts within blocks, and enforces cross-block
links. Pairwise comparisons (i = P). Respondents complete Tp trials, choosing the preferred scene in each
pair. Pairs are generated to balance comparisons across scenes (approximate degree balance) and avoid over-
sampling a subset. Utilities are estimated with Bradley—Terry or Thurstone models (Bradley & Terry, 1952;
Thurstone, 1927); response times are used to assess fatigue-related increases in choice noise. Best—worst
scaling (m = B). Respondents complete 75 max-diff tasks with set size k (e.g., k = 4), choosing the most
and least preferred items in each set. Sets are designed for near-orthogonal item appearance/position with
constraints on item frequency, co-occurrence, and positional balance, supporting multinomial logit/max-diff
estimation (Louviere et al., 2015; McFadden, 1974) and reduced-trial stress tests.

Across methods, the number of judgments per respondent is chosen to equalize expected burden (minutes)
while maintaining sufficient information for utility estimation; a burden—precision frontier is quantified via
reduced-trial stress tests. For external relevance, we collect outcomes for a subset of scenes per respon-
dent (balanced across contexts): (i) visit intention, (ii) perceived restorativeness, and (iii) willingness-to-
pay/support (optional), each on 1-7 scales. Covariates z; include demographics, familiarity/exposure, and
nature-relatedness to adjust for baseline orientation. We measure burden and data quality using comple-
tion time and latencies, dropout, missingness/straightlining (where applicable), and post-task self-reported
difficulty/fatigue. Primary results are reported with and without pre-specified exclusions; sensitivity to
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screening is treated as a core validity diagnostic. A subset of respondents is re-contacted after 7—14 days to
repeat the same method m on the same scenes with re-randomized order. This supports (i) respondent-level
stability (within-person similarity of preference profiles) and (ii) scene-level stability (agreement of estimated
utilities/mean ratings) while reducing memory and order effects.

ANALYSIS PLAN

All analyses target the latent preference scale in (1) and explicitly account for method-specific observation
models. We report uncertainty using bootstrap over respondents (and, where relevant, over tasks) and control
multiple comparisons for planned contrasts.

Scaling and estimation. Likert data are analyzed using (i) respondent-standardized continuous scores and
(i1) an ordinal threshold model with respondent-specific location/scale terms as a robustness check (cf. (2)).
Ranking data are analyzed using a Plackett—Luce likelihood or converted to implied paired wins; critically,
we verify global identifiability via graph connectivity diagnostics before fitting global scales. Pairwise data
are fit with Bradley—Terry/Thurstone likelihoods (cf. (3)); BWS data are fit with max-dift logit (cf. (4)). For
all utility-based methods we normalize utilities by setting }_;4; = 0 for identifiability.

Reliability. We report two complementary notions. (i) Respondent-level stability: for each retested re-
spondent, compute the correlation between 77 and 7, preference vectors across scenes; summarize by
mean/median and bootstrap CL. (ii) Scene-level stability: estimate scene utilities separately at 77 and 7> and
report corr(ﬁng), ﬁﬁm) with bootstrap CI. This separation prevents conflating stable aggregate rankings with
unstable individual mappings.

Discriminability (precision) and minimal detectable differences. We quantify discriminability with two
aligned metrics. (i) Signal-to-noise ratio for participant-scene scores:

Var;(7.))

SNR = )
7L, Vari(yi;)

reported within comparable subsets (and within ranking blocks when global scaling is not identified). (ii)
Utility precision index for model-based utilities:

2]

- SDi@)

SE(#;)
where SE(ii;) is obtained by respondent bootstrap. To translate precision into decision-relevant terms, we also
report a minimal detectable utility gap between two scenes j and k:

MDD (@) = zi-ay2 \/ SE(#1;)? + SE(i1)2.

Moderation by complexity and expertise. We test c; and ¢; interactions by extending (1) with method-
specific slope shifts and, where supported, heteroskedastic noise (e.g., Var(1;;) increasing in c; for rating
formats). Effects are reported as marginal contrasts with uncertainty bands over c;.

Predictive validity. For each method, we compute method-specific preference scores (ratings-based standard-
ized scores or estimated utilities) and fit mixed models predicting external outcomes:

External;; = O£o+061P/re\fl~j+ aTzi+7Lij+ui+vj+£,-j,
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where w; includes context indicators and (optionally) ¢;. Methods are compared using K-fold cross-validated
R? (or appropriate likelihood-based scores for non-Gaussian outcomes) and calibration plots; differences are
reported with bootstrap Cls.

Burden—quality frontier and robustness. Burden metrics (time, dropout, difficulty) are compared across
methods using generalized models (log-normal for time, logistic for dropout). Robustness is evaluated via
(1) reduced-trial stress tests (e.g., halving pairwise comparisons or BWS sets) and (ii) sensitivity analyses
excluding attention failures and extreme-speed responses. Primary conclusions must hold across these
pre-specified robustness checks.

RESULTS

This section reports results from a fully specified simulation that instantiates (1)—(4) under realistic online-
study constraints. The purpose is not to substitute for field data, but to provide a complete, reproducible
benchmark demonstrating how the proposed diagnostics and metrics behave under known ground truth.

We generate J = 48 scenes (4 contexts x 2 complexity levels x 6 each) with attribute vectors x; and
complexity c¢;. We sample N = 800 respondents, randomized equally to Likert, ranking, pairwise, and BWS
(n = 200 per method). Respondent-specific scale-use parameters (J;,s;) are applied to Likert outcomes, and
respondent-specific choice-noise k; is applied to comparative-choice tasks. Dropout and attention failures
follow method-dependent rates; a 25% subset completes a retest after 7-14 days. Pairwise uses 60 comparisons
per respondent; BWS uses 18 sets of four items. External outcomes are collected for 12 scenes per respondent
(balanced across contexts) to manage burden while enabling scene-level prediction.

Table 2: Burden and data quality by method (synthetic; N = 800 assigned).

Method Dropout Attn. fail Mean time (min) Median time Difficulty (1-7)

Likert 0.060 0.050 6.77 6.56 2.32
Ranking 0.065 0.040 8.17 7.73 3.25
Pairwise 0.135 0.090 12.16 11.86 4.33
BWS 0.150 0.075 11.57 11.22 3.96

Note. Burden and data-loss rates are generated to reflect common online patterns; empirical studies should
report observed rates with uncertainty and exclusion-rule sensitivity.

Test—retest is reported at both respondent and scene levels to separate individual mapping stability from
aggregate ordering stability. As shown in Table 3 Figure 2, scene-level stability is high across all methods
in this synthetic setting (a common empirical pattern when true between-scene signal dominates), whereas
respondent-level stability varies sharply by method, reflecting differences in response mapping noise and
burden.

Discriminability is evaluated using SNR for rating-like scores and a bootstrap-based precision index for utility
models.Table 4 demonstrates that comparative-choice formats produce substantially tighter utility estimates
(larger IT) under equal sample size, consistent with H1. Complexity moderation is evaluated by recomputing
SNR and IT within low/high c; strata and by interacting c¢; with method in the latent model; in this synthetic
setting, relative-choice methods retain precision as complexity increases, while ratings show larger variance
inflation, consistent with H2 under a heteroskedastic mapping.

External outcomes are evaluated out-of-sample using cross-validated R> under a common mixed-effects
specification. Table 5 and Figure 3 show broadly comparable predictive performance across methods in this
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Table 3: Test—retest reliability benchmarks (synthetic).

Method Participant-level mean r Scene-level stability r

Likert 0.50 0.97
Ranking 0.14 091
Pairwise 0.21 0.96
BWS 0.35 0.98

Note. Participant-level r is the within-person correlation across scenes
between 77 and T; (standardized within person where applicable). Scene-
level stability is the correlation between scene utilities at 77 and 7> for the
retest subset.

0:97 ‘ 096 698
L [0 Participant-level 0.91 = . 8
00 Scene-level
S
£
g= 0.5
= 05} .
% 0.35
© 0.21
0.14 H
pa— i | |
Likert Ranking Pairwise BWS

Figure 2: Test—retest reliability benchmarks (synthetic). Participant-level reliability reflects within-person
stability across scenes; scene-level reflects stability of estimated scene utilities across time.

Table 4: Discriminability / precision benchmarks (synthetic).

Method Metric Value
Likert SNR (scene signal / within-scene noise) 0.87
Ranking SNR within ranking blocks  0.26
Pairwise Utility precision SD(ii;)/SE(4;)  9.14
BWS Utility precision SD(i;)/SE(4;) 12.61

Note. Ranking SNR is reported within blocks because disconnected block
designs do not identify a single global scale without bridging. Utility
precision uses respondent bootstrap SEs.

synthetic setting, indicating that predictive gains may be limited when true preference differences are large
relative to noise; this underscores why precision and identifiability diagnostics are essential complements
to predictive validity in method selection. Reduced-trial stress tests quantify how precision deteriorates as
burden constraints shorten tasks, while attention-exclusion sensitivity evaluates dependence on screening
rules; Table 6 demonstrates substantial precision loss when pairwise/BWS trials are halved, formalizing
the burden—precision frontier. Identification of a global preference scale from comparative data requires a
connected comparison graph G = (V, E) over stimuli, where V = 1,...,J and (j,k) € E indicates at least one
comparison between scenes j and k; if G is disconnected, utilities are identifiable only within components
and across-context comparisons are undefined. Ranking designs are especially vulnerable when blocks align
with contexts (e.g., parks only or waterfronts only), causing G to fragment and rendering global utilities
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underidentified or implicitly constrained. We therefore elevate connectivity to a first-class diagnostic, reporting
both the number of connected components and, where relevant, the graph Laplacian’s algebraic connectivity
as a graded measure of identifiability. A minimal remedy is to introduce a small number of mixed-context
bridging blocks or anchor scenes repeated across blocks to restore connectivity with limited added burden, as
illustrated in Table 7 and Figure 4.

Table 5: Predictive validity benchmarks: 5-fold cross-validated R?
(synthetic).

Method Visit intention Restorativeness WTP/support

Likert 0.424 0.338 0.202
Ranking 0.424 0.383 0.141
Pairwise 0.407 0.358 0.159
BWS 0.372 0.342 0.133

Note. Differences are scenario-dependent; empirical studies should report
uncertainty intervals, calibration, and robustness to exclusions and trial-count

reductions.
| |
0o o.adsit 0.42 0.41
% 04 [l D Restotativeness [0.38 .36 0.37 |
- 0o Wip = .34
5
=
I 0.2
7 02) 0.16 2
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e
) H
0 [ I I I
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Figure 3: Predictive validity benchmarks (synthetic): cross-validated R? for external criteria.

Table 6: Robustness stress tests (synthetic): reduced trials de-
grade utility precision.

Method Full trials Half trials
Pairwise precision SD(#4)/SE(#) 9.14 6.50
BWS precision SD(a) /SE(2) 12.61 8.51

Note. “Half trials” uses 30 pairwise comparisons (vs 60) and 9 BWS sets
(vs 18) per participant.

Method selection is a constrained optimization over (i) required discriminability (precision and minimal
detectable differences), (ii) tolerance for response-style bias, (iii) identifiability demands (global comparability
across contexts), and (iv) respondent burden. The decision guide in 5 formalizes this trade space: when fine
discrimination is required, comparative-choice methods dominate on precision but incur higher time and
dropout; when rapid benchmarking is required, ratings are efficient but demand explicit handling of scale-use
heterogeneity; when ranking is used for pragmatic ordering, identifiability must be verified and ensured
through bridging.
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Table 7: Identification diagnostic: connected components in the implied comparison graph
(synthetic design).

Ranking design # blocks Connected components
Within-context x complexity blocks only 8 8
With mixed “bridge” blocks across contexts 8 + 8 bridges 1

Note. A connected graph is required to identify a single global latent scale under Bradley—
Terry/Thurstone/Plackett—Luce-style models.

Disconnected ranking blocks Add bridging blocks or anchors
(non-identifiable global scale) (connected graph; identifiable)
8 disconnected components (schematic) Connected after bridges (schematic)

Uy Segtoed

Figure 4: Connectivity-based identification diagnostic for ranking designs: within-block ranking can yield
disconnected comparison graphs. Bridging blocks or anchors restore connectivity and enable a global latent
scale.

Discrimination requirement: Is the study designed to resolve small differences among similar
alternatives (high precision / low MDD)?

Yes: Prefer BWS or pairwise. Choose trial counts using stress-test curves (precision vs time)
and report bootstrap SEs and MDDs.

[Time constraint: Is per-respondent time severely limited (e.g., < 7 minutes) or is dropout risk )
high?

Yes: Usc Likert with explicit scalc-use mitigation (respondent standardization and/or ordinal
threshold model with respondent-level location/scale).

]

[Com])arahilily requirement: Do you need a single global scale across contexts/blocks?

, l

l If ranking is used: enforce connectivity with bridging blocks or anchor scenes and report

connectivity diagnostics. Otherwise restrict inference to within-block ordering.

Figure 5: Decision guide: select judgment methods by jointly considering precision requirements, time/burden
constraints, and global identifiability across contexts.

Table 8: Method comparison summary (synthetic benchmarks; interpret as relative trade-

offs).
Criterion Likert Ranking Pairwise BWS
Burden (mean time) low low—mid high high
Dropout sensitivity low low high high
Discriminability / precision moderate block-dependent high highest
Scale-use bias exposure higher lower lower lower
Global identifiability risk low high if disconnected low low
Modeling effort low low-mid mid mid-high

Note. Ranking requires connectivity for global scales; otherwise restrict inference to within-block ordering.
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DISCUSSION

Preference measurement in landscape research is an inferential task: the object of interest is a latent utility
surface over scenes, and observed responses are method-specific mappings of that construct. Making the
observation model explicit shows why method comparisons must evaluate not only predictive validity but
also precision, bias exposure, and identifiability. Comparative-choice designs are often efficient because
they emphasize utility differences (e.g., u;; — u;;), reducing dependence on respondent-specific scale use and
sharpening discrimination among visually similar scenes at a fixed sample size. The benefit is constrained
by burden: longer tasks increase fatigue and dropout, while fewer trials increase uncertainty, yielding a
measurable burden—precision trade-off (cf. Tables 2 and 6).

A central contribution is to elevate identification diagnostics to a reported design property. Ranking is
intuitive and stakeholder-friendly, but when implemented in context-only blocks without bridging, cross-
context utilities are not identified. The proposed connectivity diagnostic and remedies provide a minimal fix:
a small number of mixed-context blocks or anchor scenes can restore identifiability and make ranking-based
utility estimation defensible.

Synthetic validation demonstrates how the reporting template behaves under known ground truth and realistic
data-quality loss (dropout, inattention, response-style heterogeneity). Empirical studies should preserve the
same reporting structure, emphasizing uncertainty, robustness to screening, and sensitivity to trial counts, and
should justify method choice by the inferential goal (fine discrimination, benchmarking, typology discovery,
or defensible prioritization under limited time) rather than convention.

Because landscape-preference evidence increasingly guides design, policy, and conservation decisions, con-
clusions are only as credible as the elicitation method. This paper offers a unified, model-explicit framework
to compare judgment methods on reliability, precision, bias exposure, identifiability, and external predictive
validity, supported by stress tests and a practical decision guide. By treating identifiability—especially
for ranking—as a primary design constraint, the framework strengthens methodological defensibility and
cross-study comparability.

DATA AVAILABILITY

Synthetic validation. All numerical results reported here can be reproduced from the fully specified simulation
described results section. Empirical component. Upon completion of an empirical study, de-identified
outcomes, derived utilities (pairwise/BWS), stimulus attribute codes, and analysis scripts should be deposited
in a public repository (subject to licensing constraints for images).

REFERENCES

Berto, R. (2005). Exposure to restorative environments helps restore attentional capacity. Journal of Environ-
mental Psychology, 25(3), 249-259.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4), 324-345.

Brown, S. R. (1993). A primer on q methodology. Operant Subjectivity, 16(3/4), 91-138.

Daniel, T. C. (1976). Measuring landscape esthetics: The scenic beauty estimation method (tech. rep. No. 167).
Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.



Journal of Architectural and Planning Research
37:2 (Summer, 2022) 127

Daniel, T. C. (2001). Whither scenic beauty? visual landscape quality assessment in the 21st century. Land-
scape and Urban Planning, 54(1-4), 267-281.

Hartig, T., Korpela, K., Evans, G. W., & Girling, T. (1997). A measure of restorative quality in environments.
Scandinavian Housing and Planning Research, 14(4), 175-194.

Hunter, D. R. (2004). Mm algorithms for generalized bradley—terry models. The Annals of Statistics, 32(1),
384-406.

Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University
Press.

King, G., Murray, C. J. L., Salomon, J. A., & Tandon, A. (2004). Enhancing the validity and cross-cultural
comparability of measurement in survey research. American Political Science Review, 98(1), 191-207.

Krosnick, J. A. (1991). Response strategies for coping with the cognitive demands of attitude measures in
surveys. Applied Cognitive Psychology, 5(3), 213-236.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, (140), 1-55.

Louviere, J. J., Flynn, T. N., & Marley, A. A. J. (2015). Best-worst scaling: Theory, methods and applications.
Cambridge University Press.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior [Often circulated as a 1974
chapter in Frontiers in Econometrics (ed. P. Zarembka); the provided source lists 1972].

Stephenson, W. (1953). The study of behavior: Q-technique and its methodology. University of Chicago Press.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273-286.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.

Tveit, M. S., Ode, A., & Fry, G. (2006). Key concepts in a framework for analysing visual landscape character.
Landscape Research, 31(3), 229-255.

Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. In Behavior and the natural
environment (pp. 85—125). Springer US.

AUTOBIOGRAPHICAL SKETCHES

Li Ye, School of Architecture & Design, China University of Mining and Technology, Xuzhou, China
Ruoyan Wang, School of Architecture & Design, China University of Mining and Technology, Xuzhou, China
Zheng An, School of Architecture & Design, China University of Mining and Technology, Xuzhou, China
Yongxin Hang, School of Architecture & Design, China University of Mining and Technology, Xuzhou, China

Manuscript revisions completed 17 May 2022.



	Introduction and Related Work
	Framework and Hypotheses
	Methods
	Analysis Plan
	Results
	Discussion

