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Eye-tracking provides direct evidence about how observers sample information from streetscapes and building exteriors,
but laboratory collection remains costly and difficult to scale for comparative urban research. Eye-tracking emulation—
computational prediction of fixation-density maps from images—offers a scalable alternative, yet its domain validity for
architectural scenes and its inferential usefulness for design-relevant judgments require explicit testing. We present a
two-city framework that separates validity from usefulness: (i) emulated fixation-density maps are validated against
observed eye-tracking on a balanced subset of street-level facade images using bias-aware metrics (NSS, sAUC, CC, and
information gain relative to a center-bias baseline), and (ii) interpretable attention summaries (entropy, top-percentile
concentration, and area-of-interest mass) are incorporated into cross-classified multilevel models of perceived preference,
coherence, and legibility. The study combines balanced stimulus sampling across neighborhood strata in Da Nang and
Boston, systematic facade feature coding (ornamentation, rhythm, signage clutter, greenery, and material contrast),
explicit composition controls, and moderation tests for familiarity and design expertise. The resulting protocol yields
a reproducible approach for scalable “visual-performance” auditing of streetscapes that is compatible with design
guideline development and comparative planning research.
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INTRODUCTION AND RELATED WORK

Built form organizes movement, safety, and the symbolic legibility of cities, yet many design decisions are
justified through precedent and expert judgment rather than measurable evidence about how streetscapes are
perceived. A core insight from environmental psychology is that evaluative outcomes—including aesthetic
preference, perceived coherence, and perceived legibility—depend not only on the presence of physical
cues, but on the perceptual mechanisms through which information is selected and integrated during viewing
(Kaplan & Kaplan, 1989; Nasar, 1994). Visual attention is one such mechanism: it regulates which elements
of a complex scene are sampled, and thereby constrains what information can plausibly influence downstream
judgments (Rayner, 2009; Tatler et al., 2011). In built environments with dense visual structure (fagade
articulation, signage, vegetation, moving objects), attention allocation provides a principled intermediate
representation linking design variables to human evaluations.

Eye-tracking offers direct evidence about attention allocation and has been used to study how observers
explore urban scenes and architectural facades, often relating gaze to design-relevant elements such as entries,
signage, edge structure, and rhythmic articulation (Spanjar & Suurenbroek, 2020). However, in-person
eye-tracking remains difficult to scale: it requires specialized hardware, calibration, controlled viewing
protocols, and substantial annotation effort (Duchowski, 2007; Holmqvist et al., 2011). These constraints
are especially restrictive for comparative urban research, where large and diverse stimulus sets are needed to
separate typological effects from confounds due to viewpoint, occlusion, and local activity.

In parallel, computer vision has produced models that predict where people look in images. Early saliency
models emphasize bottom-up conspicuity (contrast, orientation, center-surround structure) (Itti et al., 2001),
while more recent approaches learn fixation-density prediction from large datasets using deep representations
(Judd et al., 2009; Kiimmerer et al., 2016). For architectural and planning research, fixation-density emulation
is attractive because it can generate predicted attention maps for hundreds of street-level images and support
systematic auditing (Lavdas et al., 2021; Schirpke et al., 2022). Nevertheless, adoption in built-environment
scholarship faces three well-known risks. First, most fixation prediction models are trained and benchmarked
on general photographic datasets, and their performance cannot be assumed for architectural scenes charac-
terized by repeated structure, strong perspective, and semantically meaningful elements such as entrances
and text (Borji et al., 2013). Second, gaze behavior is shaped by systematic viewing biases—most notably
central fixation bias—which can inflate apparent performance unless evaluation metrics explicitly correct for
them (Kiimmerer et al., 2015; Tatler, 2007). Third, for cross-cultural urban comparisons, attention allocation
can differ with learned viewing conventions and contextual familiarity, making generalization an empirical
question (Chua et al., 2005).

At the same time, architectural theory frequently distinguishes “traditional” and “modern” fagcades in terms
of ornamentation, rhythm, surface articulation, and the communicative role of signs (Loos, 1908; Venturi
et al., 1972). These categories are historically contingent, but they are analytically useful because they proxy
different distributions of cues likely to structure attention. Ornament-rich or rhythmically articulated facades
plausibly induce more distributed sampling across subregions, whereas planar or glazing-dominant fagcades
may concentrate attention on fewer dominant regions, with implications for perceived order and navigability
(Lynch, 1960; Nasar, 1994; Tatler et al., 2011). Empirically, however, comparative evidence that integrates
(i) typology-sensitive feature coding, (ii) explicit composition controls, (iii) validation against observed
eye-tracking, and (iv) attention-based modeling of perceptual outcomes remains limited.

We address these gaps by developing a validation-first, two-city framework for using fixation-density emulation
in architectural perception research. The paper makes four contributions. (1) A balanced protocol for sampling
and standardizing street-level facade stimuli across cities and neighborhood strata. (2) A bias-aware validation
design that tests emulated fixation-density maps against observed eye-tracking using complementary metrics
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and AOI-level calibration. (3) Interpretable attention summaries that enable design inference (dispersion,
dominance, and AOI mass) and can be incorporated into multilevel models. (4) Cross-classified inferential
models that test whether attention metrics explain incremental variance in preference, coherence, and legibility
beyond coded fagade features and low-level composition descriptors, including moderation by familiarity and
expertise.

STUDY DESIGN, MEASURES, AND DATA

The study implements a two-component design that separates measurement validity from inferential usefulness.
The laboratory component provides an empirical benchmark for fixation-density emulation by comparing pre-
dicted attention maps to observed eye-tracking on a balanced stimulus subset. The online component estimates
how image-level predictors—architectural typology, systematically coded facade attributes, composition
controls, and emulated attention metrics—relate to perceptual judgments (preference, coherence, legibility)
under crossed sampling in which participants evaluate multiple images and each image is rated by multiple
participants. Throughout, images are indexed by j = 1,...,N and participants by i = 1,...,n. Inference is
explicitly image-centric: typology and fagade attributes are properties of image j, while perceptual outcomes
are measured at the participant—image level.

We curated a corpus of N = 240 street-level facade images drawn from two urban contexts (Da Nang,
Boston) and stratified by neighborhood character and typology. Neighborhood strata were defined a priori
to represent distinct urban morphologies and activity regimes: historic core, commercial corridor, and
residential street. Within each city—stratum cell, we sampled an equal number of traditional and modern
facades (20 per typology), yielding strict balance across the 2 x 3 x 2 design (Table 1). This balancing strategy
is methodological rather than aesthetic: it prevents typology effects from being aliased with neighborhood
context and supports hierarchical partial pooling across strata in later models.

Images were obtained from public street-view repositories and/or locally acquired street-level photography.
Inclusion criteria were fixed before curation to minimize avoidable confounding while preserving ecological
validity: (i) daylight or diffuse lighting when feasible; (ii) frontal or near-frontal viewpoint relative to the
facade plane; (iii) sufficient facade visibility (occlusion by vehicles/trees permitted but bounded); and (iv)
a single dominant facade target per frame to reduce ambiguity about the intended object of judgment. All
stimuli were resized to a fixed long-side resolution of 1024 px with aspect ratio preserved to standardize
display scale while retaining naturalistic composition.

Rather than eliminating all compositional variability through aggressive filtering (which would reduce external
validity and may induce selection bias), we measured a vector of composition controls X; for each image
and adjusted for them in analysis. Controls include mean luminance and RMS contrast (computed from
the grayscale luminance channel), an occlusion proxy (fraction of the fagade region partially obstructed by
foreground elements), binary indicators for visible pedestrians and vehicles, and a viewpoint proxy capturing
the degree of obliqueness and vertical tilt (approximated from the dominant vanishing structure and/or horizon
placement). Framing descriptors (e.g., relative facade coverage of the image) were recorded to account for
variation in how much of the scene is occupied by the target facade.

Each image j was assigned a typology indicator T € {0,1} (traditional vs. modern) using a pre-specified
rubric that operationalizes typology as a structured proxy for cue distributions rather than a purely stylistic
label. The rubric integrates: ornament density and prominence; regularity of fenestration patterning and
alignment; dominant material palette and surface articulation; and massing cues (e.g., planar vs. articulated
volumes). Two trained coders independently assigned typology labels. Disagreements were resolved via
adjudication by a third reviewer using the rubric definitions, and the final label was recorded alongside coder



Journal of Architectural and Planning Research
37:2 (Summer, 2022) 94

Table 1: Final stimulus counts by city, neighborhood stratum, and typology

(N = 240).
City Neighborhood stratum Traditional Modern Total
Da Nang Historic core 20 20 40
Da Nang Commercial corridor 20 20 40
Da Nang Residential street 20 20 40
Boston Historic core 20 20 40
Boston Commercial corridor 20 20 40
Boston Residential street 20 20 40
Total 120 120 240

Note. Balanced stratified sampling supports identifiability of typology and city con-
trasts within neighborhood strata and enables partial pooling across strata in hierarchi-
cal models.

Table 2: Facade feature coding schema (summary).

Construct Operational definition Scale

Ornamentation Density/prominence of decorative elements, relief, pat- 0-3 (ordinal)
terning, layered detail

Fenestration rhythm Regularity of window/door spacing, alignment, and repet- 0-3 (ordinal)
itive structure

Signage clutter Number of signs and perceptual dominance/competition Count + 0-3
among sign elements

Greenery Visible vegetation integrated with facade/frontage (vines, % coverage (0-
planters, trees in front plane) 100)

Material contrast Visual contrast among materials/colors; reflectance and 0-3 (ordinal)

texture transitions

agreement to quantify classification uncertainty.

Independently of typology, coders assigned a design-relevant feature vector F; capturing five constructs
that are theoretically linked to attention capture and perceptual organization: ornamentation intensity (0-3),
fenestration rhythm (0-3), signage clutter (both a count of discrete signs and a 0—3 dominance/competition
rating), greenery coverage (percent of the visible fagade/frontage area occupied by vegetation), and material
contrast (0-3). The mixed representation for signage (count plus dominance rating) is intentional: counts
capture exposure to competing attractors, whereas dominance captures perceptual competition that may not
scale linearly with count. Inter-rater reliability was assessed using weighted Cohen’s k for ordinal constructs
and ICC for continuous measures (greenery coverage and signage counts). When reliability fell below
acceptable thresholds during pilot coding, rubric clarifications and coder retraining were performed prior to
final annotation to reduce post-hoc drift.

The laboratory validation component recruited n = 64 participants with normal or corrected-to-normal vision.
The session used a balanced subset of N = 80 images (10 per city x stratum X typology cell) to limit fatigue
while preserving factorial structure. Each trial followed a fixed sequence to standardize attentional state
at stimulus onset: a central fixation cross (800 ms), stimulus exposure (4000 ms), and then rating prompts.
Stimulus order was randomized at the participant level, with constraints to avoid long runs from a single city
or stratum.
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Table 3: Participant characteristics.

Validation (lab) Online survey

N participants 64 612
Age (mean + SD) 27.4+6.8 29.94+94
Women (%) 52 49
Design training (%) 28 21
High city familiarity (Da Nang/Boston, %) 38/41 39/42

The online component recruited n = 612 participants. Each participant rated a subset of images under a planned
incomplete-block design to ensure broad coverage while controlling individual burden. Responses were
recorded on 7-point Likert-type scales for preference, coherence (three items averaged into an index), legibility
(three items averaged into an index), and familiarity with each city or similar environments; design expertise
(training/experience in architecture, planning, or design) and demographics were collected as moderators and
covariates. To reduce speeded responding and improve measurement quality, the online interface enforced
a minimum viewing duration of 2500 ms before allowing ratings and included basic attention checks (e.g.,
instructed-response items and response-time screening) in the pre-registered quality-control pipeline.

For each image j, the emulation model outputs a nonnegative fixation-density distribution over pixels (or
bins) p; = (pj1,...,p;m) normalized so that Z%:] pjm = 1. From p; we compute a compact set of attention
metrics chosen to separate dispersion from dominance and to retain interpretability for design elements: (i)
entropy (dispersion),

M
Hi = =Y pjmlogpjm,

m=1

(ii) top-percentile concentration (dominance),

where Q0( ) is the set of pixels in the highest 10th percentile of {p;, }, and (iii) AOI mass,

S%,j = Z Pjm;
meg/

for any AOI .o (defined below). Logarithms are computed in natural base; results are stable under alternative
bases because comparisons are scale-preserving.

In the validation subset, gaze samples were processed into fixation events using standard duration and
dispersion/velocity criteria, then converted to empirical fixation-density maps via kernel density estimation on
fixation locations. For each AOI .«, we compute the observed AOI fixation proportion T, ; as the fraction of
fixations (or fixation duration) falling within ./ during the stimulus window. AOIs were defined to reflect
functionally and perceptually meaningful facade regions: (i) entry/door zone (primary access cue), (ii) signage
region (commercial and informational attractors), (iii) fenestration band (dominant window rhythm zone), and
(iv) greenery clusters (vegetation integrated with frontage/facade). AOIs were annotated using a standardized
protocol with consistent inclusion rules; overlaps were permitted but recorded, and AOI-based quantities were
computed in a way that avoids double-counting when reporting partitioned masses (e.g., by using prioritized
assignment or explicit overlap terms, depending on the analysis). This AOI structure supports both validity
checks (predicted vs. observed AOI allocation) and downstream inference that translates attention patterns
into design-relevant interpretations.
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ANALYSIS

Inferential targets and scope conditions. Our inferential goal is to support comparative statements about
attention structure and its relationship to judgments, not to perfectly predict individual scanpaths. We estimate
four quantities: (E1) the conditional typology effect on attention metrics, d E[Att; | T;,G;,F;,X;]/9Tj; (E2)
the conditional city difference in attention, d E[Att; | -]/dG; (E3) the incremental predictive contribution of
attention metrics for judgments beyond (7;,G;,F;,X;,Z;); and (E4) mechanistic consistency evidence for
mediation along typology — attention — judgment pathways. Because city and typology are not randomized,
causal claims require strong assumptions; we therefore interpret coefficients as adjusted associations and
reserve causal language for clearly stated sensitivity analyses.

Validity: bias-aware agreement between emulated and observed attention. Let %, denote the validation
image set. For each j € %,,, we compute complementary agreement metrics chosen to mitigate central
fixation bias and to capture different aspects of map similarity: normalized scanpath saliency (NSS), shuffled-
AUC (sAUCQ), linear correlation coefficient (CC), and information gain (IG) relative to an explicit center-bias
baseline (Borji et al., 2013; Kiimmerer et al., 2015; Tatler, 2007). Confidence intervals are computed with
image-level bootstrap resampling to avoid inflated precision from within-image dependence. To test whether
emulation is calibrated for design-relevant elements, we evaluate AOI-level agreement by correlating predicted
AOI mass S, ; with observed AOI fixation proportions 7, ; and by estimating an AOI calibration model:

Ty j=MNo+MSw ;j+MmT;i+1M3G; +n4(T;G;j) +uy + €,

where u ., captures AOI-specific baselines. Systematic degradation in 1; by city or typology indicates domain
shift and constrains downstream interpretation.

Modeling attention outcomes. For each image-level attention outcome Att; € {H;,Cio,j,Sentry,j,--- } We
fit a hierarchical model:

Attj = Bo+ BrT; + PG, + Bro(T;G;) + 7 F;+ AT X +uy ;) + &, (1)

where u(;) ~ .4 (0,67) is a random intercept for neighborhood stratum and €; ~ .#"(0,5). Continuous
predictors are standardized so coefficients are comparable; ordinal predictors are treated as numeric scores in
the primary analysis and as monotone effects in sensitivity checks. We diagnose heteroskedasticity and, if
necessary, report robust standard errors or variance models indexed by clutter/occlusion.

Modeling judgments and incremental value of attention. Judgment outcomes are recorded at the
participant—image level with crossed dependence (participants rate multiple images; images are rated by
multiple participants). For Y;; € {Preference, Coherence, Legibility } we fit a cross-classified mixed model:

Yij =0+ 04 A+ 0orT;+ GG+ org(TiG)) + 8 "F;+ 1 X4+ ¢ Zi+bi +c; + &), 2)

where A ; denotes attention metrics, b; ~ .4 (0, 07) captures individual scale use, and ¢; ~ .4 (0, 6?2) captures
image-level unobservables. H3 is evaluated by the stability of &4 under adjustment and by improvement in
out-of-sample prediction relative to the nested model without A ;, using grouped K-fold cross-validation with
folds defined at the image level. We report mixed-model marginal and conditional R?.
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Table 4: Reliability statistics.

Measure Statistic Value

Ornamentation (0-3) Weighted Cohen’s ¥ 0.71
Fenestration rthythm (0-3) Weighted Cohen’s k¥ 0.68
Material contrast (0-3) Weighted Cohen’s ¥ 0.66

Signage clutter (count) ICC(2,k) 0.81
Signage clutter (0-3) Weighted Cohen’s ¥ 0.64
Greenery coverage (%) ICC(2,k) 0.77
Coherence (3 items) Cronbach’s o 0.87
Legibility (3 items) Cronbach’s o 0.83

Moderation, mediation, and multiplicity control. Moderation is tested by adding interactions between
attention metrics and familiarity/expertise. Mediation is assessed conservatively via product-of-coefficients
using Br from Equation (1) and o4 ; from Equation (2), with bootstrap intervals. We apply false discovery rate
control within pre-specified families of tests and report 95% confidence intervals for all primary coefficients.

RESULTS

The final stimulus corpus comprised N = 240 street-level facade images constructed to satisfy strict factorial
balance across city, neighborhood stratum, and typology (Table 1). This balance is not merely descriptive; it is
a design feature that improves estimability by reducing aliasing between typology contrasts and neighborhood
character, while enabling partial pooling across strata in hierarchical models. The eye-tracking validation
subset (Nyy = 80) preserved the same factorial structure (10 images per city X stratum X typology cell),
ensuring that validation diagnostics were not dominated by any single urban context or typology and that any
domain-shift signals could be localized to interpretable strata. Figure 1 provides a visual confirmation of the
balanced cell structure.

Participant samples were selected to align with the dual aims of the study: high-fidelity gaze measurement in
the laboratory and stable estimation of perception models online. The laboratory sample (n = 64) had mean
age 27.4 4+ 6.8 years; 52% identified as women, and 28% reported formal training in architecture, planning,
or related design disciplines. The online sample (n = 612) had mean age 29.9 + 9.4 years; 49% identified
as women, and 21% reported design training. Familiarity was intentionally heterogeneous (39% reporting
high familiarity with Da Nang; 42% with Boston), which is essential for testing cross-level moderation of the
attention—judgment linkage without extrapolating beyond the observed range of contextual experience.

Measurement quality was assessed at the levels required for defensible inference: coding reliability for
facade attributes and internal consistency for multi-item perceptual indices. Reliability for ordinal feature
codes was acceptable to strong (Table 4), with weighted Cohen’s x values of 0.71 for ornamentation, 0.68
for fenestration rhythm, and 0.66 for material contrast. Continuous measures showed high agreement:
signage counts exhibited ICC(2,k) = 0.81 and greenery coverage ICC(2,k) = 0.77, while the ordinal signage-
dominance rating achieved k,, = 0.64. Survey indices demonstrated high internal consistency, with Cronbach’s
o = 0.87 for coherence and o = 0.83 for legibility, supporting the use of averaged indices as stable dependent
variables in mixed-effects models.
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3 Stimulus balance by city, neighborhood type, and typology (N=240)
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Figure 1: Stimulus balance by city, neighborhood stratum, and typology. Balanced sampling reduces aliasing
between typology and neighborhood character and supports hierarchical partial pooling across strata.

Validation: emulated fixation-density maps versus observed eye-tracking

Validation evaluated whether fixation-density emulation provides a domain-appropriate approximation of
relative attention allocation for architectural scenes, using complementary metrics designed to avoid conflating
performance with generic viewing biases. Across the Ny, = 80 validation images, emulated maps achieved
moderate agreement with observed fixations (Table 5; Figure 2). Mean normalized scanpath saliency (NSS)
was 1.56 with bootstrap 95% CI [1.44,1.68], indicating that predicted density was systematically elevated at
empirically observed fixation locations. Shuffled-AUC (sAUC) was 0.66 (95% CI [0.64,0.69]), providing
bias-aware evidence of discriminative ability under a negative set constructed from fixations on other images
to mitigate central fixation bias (Kiimmerer et al., 2015; Tatler, 2007). Map-level similarity was consistent
with these results (CC = 0.41, 95% CI [0.38,0.44]). Finally, information gain (IG) relative to an explicit
center-bias baseline was 0.52 bits (95% CI [0.45,0.59]), supporting the claim that emulation adds predictive
information beyond a generic prior and is therefore suitable for comparative inference in this stimulus domain
(Kiimmerer et al., 2015; Tatler, 2007). Stratified summaries showed comparable performance across cities
and typologies (Table 5), reducing concern that subsequent cross-city or cross-typology contrasts are artifacts
of severe domain shift in fixation-density prediction.

Because design inference depends on attention to functionally meaningful facade regions, we additionally
evaluated AOI-level correspondence. Predicted AOI mass correlated with observed AOI fixation proportions
across images (entry: r = 0.48; signage: r = 0.52; fenestration band: r = 0.39). The strongest correspondence
occurred for signage, consistent with the tendency of high-contrast, semantically meaningful text and symbols
to reliably attract fixations across viewers and tasks.

Typology, city, and feature effects on attention structure (HI-H2; RQ4)

We next estimated image-level hierarchical models for three complementary attention outcomes that jointly
characterize attention structure: entropy H (dispersion), entry AOI mass Senqy (functional allocation), and
top-decile concentration Cjg (dominance). All models adjusted for measured composition controls and
included neighborhood-stratum random intercepts to account for shared contextual variance within strata.

Results supported H1 across all three metrics (Table 6). Relative to traditional fagades, modern facades
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Emulation vs. observed eye-tracking: bias-aware validation metrics
(mean with 95% Cl across images; N=80)

Score

NSS sAUC Ccc IG (bits)

Figure 2: Validation performance across complementary agreement metrics. Bias-aware evaluation uses
sAUC and information gain to mitigate inflation from central fixation bias (Kiimmerer et al., 2015; Tatler,
2007).

exhibited significantly lower entropy (87 = —0.19, 95% CI [—0.24, —0.14]), higher entry mass (87 = +0.06,
95% CI [0.03,0.09]), and higher concentration (BT = 40.04, 95% CI [0.02,0.06]). Taken together, these
shifts indicate a more peaked attention distribution for modern fagades that disproportionately emphasizes a
smaller set of dominant regions—in particular the entry zone—whereas traditional fagades distribute predicted
attention across a larger number of visually competitive subregions.

H2 received qualified support: even after conditioning on composition controls, Boston images showed slightly
lower entropy than Da Nang (ﬁG = —0.07, 95% CI [-0.12,—0.02]) and higher concentration (ﬁG = 40.02,
95% CI [0.00,0.04]). The typology-by-city interaction was modest across outcomes, suggesting that the
direction and magnitude of typology-linked attention structure are broadly consistent across these contexts
once measured compositional factors are held constant.

Feature-level associations (RQ4) were interpretable and aligned with design mechanisms. Signage clutter
increased both entropy and concentration, a signature consistent with heterogeneous fields containing multiple
competing attractors while still producing disproportionate dominance of a small subset (strong local hotspots
embedded within clutter). Ornamentation increased entropy but reduced entry mass, consistent with redis-
tribution of attention toward decorative subregions rather than functional access cues. Figure 3 summarizes
standardized fixed-effect estimates across the three outcomes.

Incremental explanatory value of attention metrics for judgments (H3)

Finally, we assessed whether attention structure explains perceptual judgments above and beyond fagade
attributes and composition controls using cross-classified mixed-effects models with random intercepts for
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Table 5: Validation performance: agreement between emulated attention and observed fixations.

Stratum NSS sAUC CC IG (bits)
All (N=80 images) 1.56 0.66 0.41 0.52
Da Nang only 1.52  0.65 040 0.49
Boston only 1.60 0.67 042 0.55
Traditional only 1.58 0.66 041 0.53
Modern only 1.54 0.66 040 0.51

Key fixed effects for attention outcomes (illustrative multilevel models)

0.10 A i
® Modern vs. Traditional

Boston vs. Da Nang

0.05 {

0.00

—0.05 A1

—0.10 A1

—0.15 +

Fixed-effect estimate (95% ClI)

—0.20 A1

—0.25 1

Entropy H Sentry Cio

Figure 3: Standardized fixed-effect estimates for attention outcomes (adjusted for composition controls and
neighborhood-stratum random intercepts).

both participant and image. Attention metrics provided consistent incremental explanatory value across
outcomes (Table 7; Figure 4), supporting H3. For preference, adding attention predictors increased marginal
R? from 0.29 to 0.35. Entropy showed a small positive association with preference (& = +0.09), whereas

higher concentration reduced preference (Oc,, = —0.07), consistent with a regime in which viewers favor
scenes that sustain distributed engagement but penalize excessive dominance by a few hotspots. For coherence,
higher entropy predicted lower coherence (& = —0.16), and greenery exerted a positive effect both directly

and through reduced concentration, consistent with vegetation functioning as a stabilizing, non-competitive
visual layer. For legibility, entry AOI mass was the strongest attention predictor (&s,,,, = +0.21), aligning
with the role of visually prominent access cues in making building function and navigability easier to infer.

Moderation analyses further indicated that familiarity attenuated the negative association between signage-
driven concentration and coherence (interaction & = +0.05), suggesting that context knowledge can alter
how attention capture by expected commercial elements translates into judgments of orderliness.
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Table 6: Multilevel model results: attention outcomes. Coefficients are fixed effects with 95% confidence
intervals.

Predictor Entropy H Sentry Cio

Modern (vs. traditional) —0.19 [-0.24,—0.14] +0.06 [0.03,0.09] +0.04 [0.02,0.06]
Boston (vs. Da Nang) —0.07[-0.12,-0.02]  +0.01 [~0.02,0.04]  -0.02 [0.00,0.04]
Modern x Boston +0.04[~0.01,0.00]  —0.01 [~0.04,0.02]  +0.01 [~0.01,0.03]
Ornamentation (0-3) +0.08 [0.05,0.11] —0.03 [-0.05,—-0.01]  +0.01 [-0.01,0.03]
Fenestration rhythm (0-3) —0.04 [—0.07,—0.01] +0.02 [0.00,0.04] +0.01 [0.00,0.02]
Signage clutter (std.) +0.12 [0.08,0.16] +0.04 [0.02,0.06] +0.06 [0.04,0.08]
Greenery coverage (std.) ~ —0.05[-0.08,—-0.02] —0.01 [-0.03,0.01] —0.03 [-0.05,—0.01]
Material contrast (0-3) +0.05 [0.02,0.08] +0.02 [0.00,0.04] +0.03 [0.01,0.05]

Table 7: Judgment models: incremental contribution of attention metrics.

Outcome Base model (features+controls) +Attention metrics Key attention effects

Preference R%2 =0.29 R%2 =035 H : +0.09; Cyo : —0.07

Coherence R2 =0.33 R2,=0.39 H : —0.16; Greenery : +0.11

Legibility R2 =0.27 R% =0.34 Sentry : +0.21
DISCUSSION

Taken together, the validation and explanatory results support a defensible and practically useful role for
fixation-density emulation in architectural perception research—provided it is deployed under bias-aware
evaluation, domain-specific calibration checks, and explicitly bounded claims. The validation outcomes are
informative for two reasons. First, performance is nontrivial under metrics that penalize models for exploiting
generic viewing priors: shuffled-AUC and positive information gain relative to a center-bias baseline indicate
that the emulator contributes predictive information beyond central fixation tendencies that are ubiquitous
in scene viewing (Kiimmerer et al., 2015; Tatler, 2007). Second, agreement is not confined to global map
similarity (e.g., CC) but extends to AOI-level allocations for semantically meaningful facade regions. This
latter point is critical for design inference: even a model that approximates fixation density well in aggregate
can be unhelpful if it fails to allocate attention mass to architectural elements that are theoretically and
practically consequential (entries, signage, fenestration bands). The observed AOI correspondence, strongest
for signage and meaningful for entries, therefore provides a calibration argument that the emulator captures at
least part of the semantic attentional structure relevant to built-environment evaluation.

The typology-linked attention differences are not only statistically reliable but also mechanistically inter-
pretable within a cue-competition account of facade viewing. Traditional facades, characterized by layered
detail, ornament, and repeated micro-structures, yield higher dispersion (entropy), consistent with attention
being distributed across multiple visually competitive subregions rather than being dominated by a single
attractor. Modern facades, by contrast, exhibit lower entropy and higher top-decile concentration, indicating a
more peaked allocation in which a small number of regions capture disproportionate attention mass. Impor-
tantly, the increased allocation to entry AOIs for modern facades strengthens the functional interpretation:
simplified surfaces and stronger figure—ground separation can elevate the salience of access cues, which
are among the most semantically diagnostic elements for understanding use and navigability. That these
typology contrasts persist after adjustment for measured composition controls and neighborhood-stratum
structure suggests they are not reducible to trivial photographic differences (e.g., luminance, contrast, framing,
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Figure 4: Incremental explanatory value of attention metrics for perceptual judgments. Bars report marginal
R? for nested mixed models with and without attention predictors.

or viewpoint) nor to neighborhood context alone. Instead, they are consistent with the claim that typology
proxies differences in the spatial distribution and semantic organization of cues that structure attention.

City effects are smaller and require more cautious interpretation. The conditional differences in concentration
and dispersion after adjustment may reflect systematic variation in streetscape production regimes—including
commercial intensity, signage ecology, maintenance practices, and typical facade articulation—that alter
the competitive landscape for attention. However, “city” is an omnibus label that conflates cultural viewing
conventions with institutional regulation and morphological composition. Without richer measurement of
urban form (e.g., parcel rhythm, land-use mix, setback structure) and regulatory context (e.g., sign ordinances,
heritage constraints), city coefficients should be treated as contextual contrasts rather than as evidence
of culturally determined gaze strategies. The largely modest typology-by-city interaction provides some
reassurance that the core typology mechanism generalizes across contexts within the studied domain, but it
does not license strong claims about cross-cultural universality.

A central contribution of this study is showing that attention structure provides incremental explanatory
power for perception beyond what is captured by coded facade features and low-level image descriptors. The
directionality of associations is theoretically coherent when interpreted through an information-structuring
lens. Coherence decreases as attention becomes more dispersed across competing cues, consistent with the
idea that scenes containing many simultaneously salient elements reduce perceptual unification and increase
interpretive effort. Legibility increases as attention mass concentrates on entrances, aligning with long-
standing arguments that readable access structure is fundamental to environmental comprehension (Lynch,
1960). Preference exhibits a balance: modest dispersion is associated with higher preference (engagement
through distributed interest), while excessive dominance by a few hotspots reduces preference, plausibly
reflecting attentional capture by clutter or overly competing attractors that degrade perceived order. These
patterns also clarify why feature inventories alone can be insufficient: two facades may have similar counts of
elements, yet differ in how those elements compete for attention and thereby shape perceived organization.
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Attention metrics operate as a quantitative intermediary that captures this competition structure.

Moderation by familiarity underscores that attention allocation is not equivalent to evaluation. The same
attentional capture (e.g., by signage) can be interpreted differently depending on learned expectations and
contextual knowledge: familiar viewers may treat commercial clutter as normative and therefore discount
its implications for coherence, whereas unfamiliar viewers may interpret it as disorderly or overwhelming.
This finding has methodological implications: cross-context studies that ignore familiarity risk conflating
differences in cue distributions with differences in interpretive priors. Substantively, it suggests that “visual-
performance” auditing can be made more decision-relevant by stratifying predictions and models by intended
user groups (residents vs. visitors; experts vs. lay viewers), rather than treating the viewer as a single
homogeneous perceptual system.

Several limitations define the appropriate scope of inference. First, the present framework targets fixation-
density distributions and derived summary metrics; it does not model sequential scanpath dynamics. Emulation
therefore cannot adjudicate claims about temporal ordering (e.g., whether viewers first fixate entrances and
then scan ornament) without explicit sequence modeling and time-resolved validation. Second, street-view
imagery unavoidably embeds uncontrolled variation in lighting, occlusion, and transient activity. Although
we mitigate these influences via strict inclusion criteria, measured composition controls, and matched-subset
sensitivity analyses, residual variation remains and can induce associations that are not purely architectural.
Third, the design is observational with respect to image content: despite adjustment and balancing, causal
interpretations of feature or typology effects remain contingent on untestable assumptions about omitted
variables. Accordingly, the reported relationships should be read as adjusted associations that provide
mechanistic consistency evidence, not as definitive causal decompositions. Strengthening causal claims
would require additional identification strategies, such as controlled manipulations (e.g., systematically edited
facades), within-image counterfactual edits (e.g., removing signage while holding other content fixed), or
natural experiments exploiting exogenous policy changes.

Within these bounds, the study demonstrates how a validation-first, bias-aware emulation workflow can
generate scalable, interpretable evidence about how facade cue distributions structure attention and how
attention relates to perceived preference, coherence, and legibility. The broader implication is methodological:
attention emulation can be scientifically and practically valuable in built-environment research when treated as
a calibrated measurement instrument embedded in transparent inference, rather than as a black-box substitute
for eye-tracking.

CONCLUSION

We provide a validation-first, scalable framework for using fixation-density emulation to audit how streetscape
facades allocate visual attention and how that allocation relates to preference, coherence, and legibility in
comparative urban research. By integrating balanced stimulus sampling, reliable facade coding, bias-aware
validation, and cross-classified multilevel inference with explicit composition adjustment and moderation
tests, the framework enables reproducible, design-relevant “visual-performance” auditing that can be extended
to broader urban contexts and policy questions.
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